Biological Translation: Biological Materials Science and Bioinspired Design
- Award ID(s):
- 1946202
- PAR ID:
- 10498161
- Publisher / Repository:
- Springer Science and Business Media LLC
- Date Published:
- Journal Name:
- JOM
- Volume:
- 75
- Issue:
- 7
- ISSN:
- 1047-4838
- Page Range / eLocation ID:
- 2101 to 2101
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)At least two types of pincer complexes are known to exist in biology. A metal-pyrroloquinolone quinone (PQQ) cofactor was first identified in bacterial methanol dehydrogenase, and later also found in selected short-chain alcohol dehydrogenases of other microorganisms. The PQQ-associated metal can be calcium, magnesium, or a rare earth element depending on the enzyme sequence. Synthesis of this organic ligand requires a series of accessory proteins acting on a small peptide, PqqA. Binding of metal to PQQ yields an ONO-type pincer complex. More recently, a nickel-pincer nucleotide (NPN) cofactor was discovered in lactate racemase, LarA. This cofactor derives from nicotinic acid adenine dinucleotide via action of a carboxylase/hydrolase, sulfur transferase, and nickel insertase, resulting in an SCS-type pincer complex. The NPN cofactor likely occurs in selected other racemases and epimerases of bacteria, archaea, and a few eukaryotes.more » « less
-
null (Ed.)Synopsis Many biological systems across scales of size and complexity exhibit a time-varying complex network structure that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein interaction networks that govern physiology and metabolism, and neural networks that store and convey information to networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of longitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other biological systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for the biological system to cope with for example invaders or new information flows. The confluence of these developments renders tractable the question of how the structure of biological networks predicts and controls network dynamics. In particular, there may be structural features that result in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resilience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological networks with their function, positioning them on the spectrum of time-evolving network structure, i.e. dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our ability to predict the response of biological systems to perturbations—an increasingly urgent priority in the face of anthropogenic changes to the environment that affect life across the gamut of organizational scales.more » « less
-
Abstract The relationship between structure and function is a major constituent of the rules of life. Structures and functions occur across all levels of biological organization. Current efforts to integrate conceptual frameworks and approaches to address new and old questions promise to allow a more holistic and robust understanding of how different biological functions are achieved across levels of biological organization. Here, we provide unifying and generalizable definitions of both structure and function that can be applied across all levels of biological organization. However, we find differences in the nature of structures at the organismal level and below as compared to above the level of the organism. We term these intrinsic and emergent structures, respectively. Intrinsic structures are directly under selection, contributing to the overall performance (fitness) of the individual organism. Emergent structures involve interactions among aggregations of organisms and are not directly under selection. Given this distinction, we argue that while the functions of many intrinsic structures remain unknown, functions of emergent structures are the result of the aggregate of processes of individual organisms. We then provide a detailed and unified framework of the structure–function relationship for intrinsic structures to explore how their unknown functions can be defined. We provide examples of how these scalable definitions applied to intrinsic structures provide a framework to address questions on structure–function relationships that can be approached simultaneously from all subdisciplines of biology. We propose that this will produce a more holistic and robust understanding of how different biological functions are achieved across levels of biological organization.more » « less
An official website of the United States government

