skip to main content


Title: Thermal Conductivity of MgSiO 3 ‐H 2 O System Determined by Machine Learning Potentials
Abstract

Thermal conductivity plays a pivotal role in understanding the dynamics and evolution of Earth's interior. The Earth's lower mantle is dominated by MgSiO3polymorphs which may incorporate trace amounts of water. However, the thermal conductivity of MgSiO3‐H2O binary system remains poorly understood. Here, we calculate the thermal conductivity of water‐free and water‐bearing bridgmanite, post‐perovskite, and MgSiO3melt, using a combination of Green‐Kubo method with molecular dynamics simulations based on a machine learning potential of ab initio quality. The thermal conductivities of water‐free bridgmanite and post‐perovskite overall agree well with previous theoretical and experimental studies. The presence of water mildly reduces the thermal conductivity of the host minerals, significantly weakens the temperature dependence of the thermal conductivity, and reduces the thermal anisotropy of post‐perovskite. Overall, water reduces the thermal conductivity difference between bridgmanite and post‐perovskite, and thus may attenuate lateral heterogeneities of the core‐mantle boundary heat flux.

 
more » « less
Award ID(s):
2242946
NSF-PAR ID:
10498302
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
5
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The thermal conductivity of bridgmanite, the primary constituent of the Earth's lower mantle, has been investigated using diamond anvil cells at pressures up to 85 GPa and temperatures up to 3,100 K. We report the results of time‐domain optical laser flash heating and X‐ray Free Electron Laser heating experiments from a variety of bridgmanite samples with different Al and Fe contents. The results demonstrate that Fe or Fe,Al incorporation in bridgmanite reduces thermal conductivity by about 50% in comparison to end‐member MgSiO3at the pressure‐temperature conditions of Earth's lower mantle. The effect of temperature on the thermal conductivity at 28–60 GPa is moderate, well described as , whereais 0.2–0.5. The results yield thermal conductivity of 7.5–15 W/(m × K) in the thermal boundary layer of the lowermost mantle composed of Fe,Al‐bearing bridgmanite.

     
    more » « less
  2. Abstract

    Hydrogen may be incorporated into nominally anhydrous minerals including bridgmanite and post‐perovskite as defects, making the Earth's deep mantle a potentially significant water reservoir. The diffusion of hydrogen and its contribution to the electrical conductivity in the lower mantle are rarely explored and remain largely unconstrained. Here we calculate hydrogen diffusivity in hydrous bridgmanite and post‐perovskite, using molecular dynamics simulations driven by machine learning potentials of ab initio quality. Our findings reveal that hydrogen diffusivity significantly increases with increasing temperature and decreasing pressure, and is considerably sensitive to hydrogen incorporation mechanism. Among the four defect mechanisms examined, (Mg + 2H)Siand (Al + H)Sishow similar patterns and yield the highest hydrogen diffusivity. Hydrogen diffusion is generally faster in post‐perovskite than in bridgmanite, and these two phases exhibit distinct diffusion anisotropies. Overall, hydrogen diffusion is slow on geological time scales and may result in heterogeneous water distribution in the lower mantle. Additionally, the proton conductivity of bridgmanite for (Mg + 2H)Siand (Al + H)Sidefects aligns with the same order of magnitude of lower mantle conductivity, suggesting that the water distribution in the lower mantle may be inferred by examining the heterogeneity of electrical conductivity.

     
    more » « less
  3. Abstract

    Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3bridgmanite (FA50) with the highest Fe3+‐Al3+coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yieldsV0 = 172.1(4) Å3,K0 = 229(4) GPa withK0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+cations exchanged with Al3+and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle.

     
    more » « less
  4. Abstract

    Silicate melts have served as transport agents in the chemical and thermal evolution of Earth. Molecular dynamics simulations based on a deep neural network potential trained byab initiodata show that the viscosity of MgSiO3melt decreases with increasing pressure at low pressures (up to ∼6 GPa) before it starts to increase with further compression. The melt electrical conductivity also behaves anomalously; first increasing and then decreasing with pressure. The melt accumulation implied by the viscosity turnover at ∼23 GPa along mantle liquidus offers an explanation for the low‐velocity zone at the 660‐km discontinuity. The increase in electrical conductivity up to ∼50 GPa may contribute to the steep rise of Earth's electrical conductivity profiles derived from magnetotelluric observations. Our results also suggest that small fraction of melts could give rise to detectable bulk conductivity in deeper parts of the mantle.

     
    more » « less
  5. Abstract

    The primary phase of the Earth’s lower mantle, (Al, Fe)‐bearing bridgmanite, transitions to the post‐perovskite (PPv) phase at Earth’s deep mantle conditions. Despite extensive experimental and ab initio investigations, there are still important aspects of this transformation that need clarification. Here, we address this transition in (Al3+, Fe3+)‐, (Al3+)‐, (Fe2+)‐, and (Fe3+)‐bearing bridgmanite using ab initio calculations and validate our results against experiments on similar compositions. Consistent with experiments, our results show that the onset transition pressure and the width of the two‐phase region depend distinctly on the chemical composition: (a) Fe3+‐, Al3+‐, or (Al3+, Fe3+)‐alloying increases the transition pressure, while Fe2+‐alloying has the opposite effect; (b) in the absence of coexisting phases, the pressure‐depth range of the Pv‐PPv transition is likely too broad to cause a sharp D” discontinuity (<30 km); (c) the average Clapeyron slope of the two‐phase regions are consistent with previous measurements, calculations in MgSiO3, and inferences from seismic data. In addition, (d) we observe a softening of the bulk modulus in the two‐phase region. The consistency between our results and experiments gives us the confidence to proceed and examine this transition in aggregates with different compositions computationally, which will be fundamental for resolving the most likely chemical composition of the D region by analyses of tomographic images.

     
    more » « less