skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Special Session: CAD for Hardware Security - Promising Directions for Automation of Security Assurance
Hardware security creates a hardware-based security foundation for secure and reliable operation of systems and applications used in our modern life. The presence of design for security, security assurance, and general security design life cycle practices in product life cycle of many large semiconductor design and manufacturing companies these days indicates that the importance of hardware security has been very well observed in industry. However, the high cost, time, and effort for building security into designs and assuring their security - due to using many manual processes - is still an important obstacle for economy of secure product development. This paper presents several promising directions for automation of design for security and security assurance practices to reduce the overall time and cost of secure product development. First, we present security verification challenges of SoCs, possible vulnerabilities that could be introduced inadvertently by tools mapping a design model in one level of abstraction to its lower level, and our solution to the problem by automatically mapping security properties from one level to its lower level incorporating techniques for extension and expansion of the properties. Then, we discuss the foundation necessary for further automation of formal security analysis of a design by incorporating threat model and common security vulnerabilities into an intermediate representation of a hardware model to be used to automatically determine if there is a chance for direct or indirect flow of information to compromise confidentiality or integrity of security assets. Finally, we discuss a pre-silicon-based framework for practical and time-and-cost effective power-side channel leakage analysis, root-causing the side-channel leakage by using the automatically generated leakage profile of circuit nodes, providing insight to mitigate the side-channel leakage by addressing the high leakage nodes, and assuring the effectiveness of the mitigation by reprofiling the leakage to prove its acceptable level of elimination. We hope that sharing these efforts and ideas with the security research community can accelerate the evolution of security-aware CAD tools targeted to design for security and security assurance to enrich the ecosystem to have tools from multiple vendors with more capabilities and higher performance.  more » « less
Award ID(s):
2247756 2247755
PAR ID:
10498329
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2023 IEEE 41st VLSI Test Symposium (VTS)
ISSN:
2375-1053
ISBN:
979-8-3503-4630-5
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Location:
San Diego, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Confidential computing aims to secure the code and data in use by providing a Trusted Execution Environment (TEE) for applications using hardware features such as Intel SGX.Timing and cache side-channel attacks, however, are often outside the scope of the threat model, although once exploited they are able to break all the default security guarantees enforced by hardware. Unfortunately, tools detecting potential side-channel vulnerabilities within applications are limited and usually ignore the strong attack model and the unique programming model imposed by Intel SGX. This paper proposes a precise side-channel analysis tool, ENCIDER, detecting both timing and cache side-channel vulnerabilities within SGX applications via inferring potential timing observation points and incorporating the SGX programming model into analysis. ENCIDER uses dynamic symbolic execution to decompose the side-channel requirement based on the bounded non-interference property and implements byte-level information flow tracking via API modeling. We have applied ENCIDER to 4 real-world SGX applications, 2 SGX crypto libraries, and 3 widely-used crypto libraries, and found 29 timing side channels and 73 code and data cache side channels. We have reported our findings to the corresponding parties, e.g., Intel and ARM, who have confirmed most of the vulnerabilities detected. 
    more » « less
  2. The majority of malicious mobile attacks take advantage of vulnerabilities in mobile applications, such as sensitive data leakage via inadvertent or side channel, unsecured sensitive data storage, data transmission, and many others. Most of these mobile vulnerabilities can be detected in the mobile software testing phase. However, most development teams often have virtually no time to address them due to critical project deadlines. To combat this, the more defect removal filters there are in the software development life cycle, the fewer defects that can lead to vulnerabilities will remain in the software product when it is released. In this paper, we provide details of a data protection module and how it can be enforced in mobile applications. We also share our initial experience and feedback on the module. 
    more » « less
  3. Machine learning (ML) deployment projects are used by practitioners to automatically deploy ML models. While ML deployment projects aid practitioners, security vulnerabilities in these projects can make ML deployment infrastructure susceptible to security attacks. A systematic characterization of vulnerabilities can aid in identifying activities to secure ML deployment projects used by practitioners. We conduct an empirical study with 149 vulnerabilities mined from 12 open source ML deployment projects to characterize vulnerabilities in ML deployment projects. From our empirical study, we (i) find 68 of the 149 vulnerabilities are critically or highly severe; (ii) derive 10 consequences of vulnerabilities, e.g., unauthorized access to trigger ML deployments; and (iii) observe established quality assurance activities, such as code review to be used in the ML deployment projects. We conclude our paper by providing a set of recommendations for practitioners and researchers. Dataset used for our paper is available online. 
    more » « less
  4. The growing market of the mobile application is overtaking the web application. Mobile application development environment is open source, which attracts new inexperienced developers to gain hands on experience with application development. However, the security of data and vulnerable coding practice is an issue. Among all mobile Operating systems such as, iOS (by Apple), Android (by Google) and Blackberry (RIM), Android dominates the market. The majority of malicious mobile attacks take advantage of vulnerabilities in mobile applications, such as sensitive data leakage via the inadvertent or side channel, unsecured sensitive data storage, data transition and many others. Most of these vulnerabilities can be detected during mobile application analysis phase. In this paper, we explore vulnerability detection for static and dynamic analysis tools. We also suggest limitations of the tools and future directions such as the development of new plugins. 
    more » « less
  5. An increasing number of Trusted Execution Environment (TEE) is adopting to a variety of commercial products for protecting data security on the cloud. However, TEEs are still exposed to various side-channel vulnerabilities, such as execution order-based, timing-based, and power-based vulnerabilities. While recent hardware is applying various techniques to mitigate order-based and timing-based side-channel vulnerabilities, power-based side-channel attacks remain a concern of hardware security, especially for the confidential computing settings where the server machines are beyond the control of cloud users. In this paper, we present PWRLEAK, an attack framework that exploits AMD’s power reporting interfaces to build power side-channel attacks against AMD Secure Encrypted Virtualization (SEV)-protected VM. We design and implement the attack framework with three general steps: (1) identify the instruction running inside AMD SEV, (2) apply a power interpolator to amplify power consumption, including an emulation-based interpolator for analyzing purposes and a moregeneral interrupt-based interpolator, and (3) infer secrets with various analysis approaches. A case study of using the emulation-based interpolator to infer the whole JPEG images processed by libjpeg demonstrates its ability to help analyze power consumption inside SEV VM. Our end-to-end attacks against Intel’s Integrated Performance Primitives (Intel IPP) library indicates that PWRLEAK can be exploited to infer RSA private keys with over 80% accuracy using the interrupt based interpolator. 
    more » « less