skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engineering the Device Performance of PLD Grown Tantalum Oxide based RRAM Devices
Resistive Switching Random Access Memory (RRAM) technology is critical for advancing beyond von Neumann computing applications like neuromorphic computing. Enhancing RRAM performances is contingent on carefully controlling the properties of the switching layer material, such as composition, stoichiometry, and crystal structure. This paper reports the use of a Pulsed Laser Deposition (PLD) and post-growth annealing process to create TaOx films with different crystal structures, and their comprehensive characterization, including structural analysis using XRD and XPS techniques, as well as electrical characterization through I-V measurements to assess switching performance. Bipolar resistive switching dynamics is demonstrated for RRAM device stacks fabricated from both as-grown and annealed TaOx films. Additionally, electroformation, set, and reset voltage device metrics of RRAM devices are reported to increase as a result of the annealing process, which enhances the crystallization of the PLD-grown TaOx films.  more » « less
Award ID(s):
2153177
PAR ID:
10498331
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE International Conference on Electro Information Technology
ISSN:
2154-0373
ISBN:
978-1-6654-9376-5
Page Range / eLocation ID:
505 to 508
Format(s):
Medium: X
Location:
Romeoville, IL, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Resistive Random Access Memory (RRAM) devices hold promise as a key enabler technology for energy-efficient, in-memory, and brain-inspired computing paradigms, with the potential to significantly enhance high-performance computing applications. However, the widespread adoption of RRAM technology in high-performance computing applications is hindered by non-ideal device metrics and various reliability challenges. RRAM devices are reported to exhibit critical device-to-device (D2D) and cycle-to-cycle (C2C) variability. In this paper, we investigate D2D and C2C variabilities of Tantalum Oxide RRAM devices and explore potentiation, depression, and endurance dynamics under varying operation conditions. Our ultimate goal is to address performance and reliability issues associated with the oxide-based RRAM device technology and facilitate its broader implementation in future computing applications. 
    more » « less
  2. Resistive switching devices are promising candidates for the next generation of nonvolatile memory and neuromorphic computing applications. Despite the advantages in retention and on/off ratio, filamentary-based memristors still suffer from challenges, particularly endurance (flash being a benchmark system showing 104to 106 cycles) and uniformity. Here, we use WO3as a complementary metal-oxide semiconductor–compatible switching oxide and demonstrate a proof-of-concept materials design approach to enhance endurance and device-to-device uniformity in WO3-based memristive devices while preserving other performance metrics. These devices show stable resistive switching behavior with >106 cycles, >105-second retention, >10 on/off ratio, and good device-to-device uniformity, without using current compliance. All these metrics are achieved using a one-step pulsed laser deposition process to create self-assembled nanocomposite thin films that have regular guided filaments of ≈100-nanometer pitch, preformed between WO3grains and interspersed smaller Ce2O3grains. 
    more » « less
  3. Biomimetic synaptic processes, which are imitated by functional memory devices in the computer industry, are a key focus of artificial intelligence (AI) research. It is critical to developing a memory technology that is compatible with Brain-Inspired Computing in order to eliminate the von Neumann bottleneck that restricts the efficiency of traditional computer designs. Due to restrictions such as high operation voltage, poor retention capacity, and high power consumption, silicon-based flash memory, which presently dominates the data storage devices market, is having difficulty meeting the requirements of future data storage device development. The developing resistive random-access memory (RRAM) has sparked intense investigation because of its simple two-terminal structure: two electrodes and a switching layer. RRAM has a resistive switching phenomenon which is a cycling behavior between the high resistance state and the low resistance state. This developing device type is projected to outperform traditional memory devices. Indium gallium zinc oxide (IGZO) has attracted great attention for the RRAM switching layer because of its high transparency and high atomic diffusion property of oxygen atoms. More importantly, by controlling the oxygen ratio in the sputter gas, its electrical properties can be easily tuned. The IGZO has been applied to the thin-film transistor (TFT), thus, it is very promising to integrate RRAM with TFT. In this work, we proposed IGZO-based RRAMs. ITO was chosen as the bottom electrode towards achieving a fully transparent memristor. And for the IGZO switching layer, we varied the O2/Ar ratio during the deposition to modify the oxygen vacancy of IGZO. Through the XPS measurement, we confirmed that the higher O2/Ar ratio can lower the oxygen vacancy concentration. We also chose ITO as the top electrode, for the comparison, two active metals copper and silver were tested for the top electrode materials. For our IGZO layer, the best ratio of O2/Ar is the middle value. And copper top electrode device has the most stable cycling switching and the silver one is perfect for large memory window, however, it encounters a stability issue. The optical transmission examination was performed using a UV-Vis spectrometer, and the average transmittance of the complete devices in the visible-light wavelength range was greater than 90%, indicating good transparency. 50nm, 100nm, and 150nm RS layers of IGZO RRAM were produced to explore the thickness dependency on the characteristics of the RS layer. Also, because the oxygen vacancy concentration influences the RS and RRAM performance, the oxygen partial pressure during IGZO sputtering was modified to maximize the property. Electrode selection is critical and can have a significant influence on the device's overall performance. As a result, Cu TE was chosen for our second type of device because Cu ion diffusion can aid in the development of conductive filaments (CF). Finally, between the TE and RS layers, a 5 nm SiO2 barrier layer was used to limit Cu penetration into the RS layer. Simultaneously, this SiO2 inserting layer can offer extra interfacial series resistance in the device, lowering the off current and, as a result, improving the on/off ratio and overall performance. In conclusion, transparent IGZO-based RRAMs have been created. The thickness of the RS layer and the sputtering conditions of the RS layer were modified to tailor the property of the RS layer. A series of TE materials and a barrier layer were incorporated into an IGZO-based RRAM and the performance was evaluated in order to design the TE material's diffusion capabilities to the RS layer and the BE. Our positive findings show that IGZO is a potential material for RRAM applications and overcoming the existing memory technology limitation. 
    more » « less
  4. The traditional von Neumann architecture limits the increase in computing efficiency and results in massive power consumption in modern computers due to the separation of storage and processing units. The novel neuromorphic computation system, an in-memory computing architecture with low power consumption, is aimed to break the bottleneck and meet the needs of the next generation of artificial intelligence (AI) systems. Thus, it is urgent to find a memory technology to implement the neuromorphic computing nanosystem. Nowadays, the silicon-based flash memory dominates non-volatile memory market, however, it is facing challenging issues to achieve the requirements of future data storage device development due to the drawbacks, such as scaling issue, relatively slow operation speed, and high voltage for program/erase operations. The emerging resistive random-access memory (RRAM) has prompted extensive research as its simple two-terminal structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer. It can utilize a temporary and reversible dielectric breakdown to cause the RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). RRAM is expected to outperform conventional memory device with the advantages, notably its low-voltage operation, short programming time, great cyclic stability, and good scalability. Among the materials for RS layer, indium gallium zinc oxide (IGZO) has shown attractive prospects in abundance and high atomic diffusion property of oxygen atoms, transparency. Additionally, its electrical properties can be easily modulated by controlling the stoichiometric ratio of indium and gallium as well as oxygen potential in the sputter gas. Moreover, since the IGZO can be applied to both the thin-film transistor (TFT) channel and RS layer, it has a great potential for fully integrated transparent electronics application. In this work, we proposed amorphous transparent IGZO-based RRAMs and investigated switching behaviors of the memory cells prepared with different top electrodes. First, ITO was choosing to serve as both TE and BE to achieve high transmittance. A multi-target magnetron sputtering system was employed to deposit all three layers (TE, RS, BE layers) on glass substrate. I-V characteristics were evaluated by a semiconductor parameter analyzer, and the bipolar RS feature of our RRAM devices was demonstrated by typical butterfly curves. The optical transmission analysis was carried out via a UV-Vis spectrometer and the average transmittance was around 80% out of entire devices in the visible-light wavelength range, implying high transparency. We adjusted the oxygen partial pressure during the sputtering of IGZO to optimize the property because the oxygen vacancy concentration governs the RS performance. Electrode selection is crucial and can impact the performance of the whole device. Thus, Cu TE was chosen for our second type of device because the diffusion of Cu ions can be beneficial for the formation of the conductive filament (CF). A ~5 nm SiO 2 barrier layer was employed between TE and RS layers to confine the diffusion of Cu into the RS layer. At the same time, this SiO 2 inserting layer can provide an additional interfacial series resistance in the device to lower the off current, consequently, improve the on/off ratio and whole performance. Finally, an oxygen affinity metal Ti was selected as the TE for our third type of device because the concentration of the oxygen atoms can be shifted towards the Ti electrode, which provides an oxygengettering activity near the Ti metal. This process may in turn lead to the formation of a sub-stoichiometric region in the neighboring oxide that is believed to be the origin of better performance. In conclusion, the transparent amorphous IGZO-based RRAMs were established. To tune the property of RS layer, the sputtering conditions of RS were varied. To investigate the influence of TE selections on switching performance of RRAMs, we integrated a set of TE materials, and a barrier layer on IGZO-based RRAM and compared the switch characteristics. Our encouraging results clearly demonstrate that IGZO is a promising material in RRAM applications and breaking the bottleneck of current memory technologies. 
    more » « less
  5. Nowadays, non-volatile memory technologies have been widely applied in different areas. Of these memory technologies, non-volatile resistive random access memory (ReRAM) is attractive because of its simple device architecture and fabrication process, high scalability and data density, good performances in terms of switching speed, high power efficiency and reasonably wide memory window. In order to address the issues of disposable and degradation of electronic waste by typical ReRAM with the active layer made of inorganic oxide materials and fossil-fuel based polymeric materials, a green and sustainable strategy has been adopted in producing ReRAM by using natural organic-based materials based on protein and carbohydrate, such as honey, fructose, aloe vera, etc. Among these materials, pectin-polysaccharide thin film has demonstrated promising resistive switching characteristics. The two ranges of pectin concentrations that have been investigated are ³5 mg/ml and £1.5 mg/ml, and it showed that pectin with concentration <1.5 mg/ml reveals a higher ON/OFF ratio. However, the resistive switching characteristics with pectin concentration between 1.5 mg/ml and 5 mg/ml have yet been explored and reported. In this work, pectin with concentrations of 1.5~5 mg/ml were prepared from pectin-polysaccharide solution into the active switching layer, and ReRAM devices with such pectin resistive switching layer were fabricated. The pectin-polysaccharide solution, pectin resistive film, and ReRAM devices were systematically investigated. Surface tension and contact angle of pectin-polysaccharide precursor solutions as a function of pectin concentration on the substrate were measured by a goniometer. Surface topography of solidified thin films was characterized by an atomic force microscope (AFM) and a field-emission scanning electron microscope (FE-SEM). Chemical functional groups of the pectin-polysaccharide precursor solutions and solidified thin films were examined by a Fourier transform infrared (FTIR) spectroscopy. The resistive switching behaviors were characterized and compared by electrical measurement. The results show that 4 mg/ml recorded the highest ON/OFF ratio compared to ever reported values, as well as desirable memory window, non-volatility in retention, and stability over 100 cycles. This study proves that pectin-polysaccharide is a promising green and sustainable bio-organic material for non-volatile ReRAM for electronic applications such as in emerging neuromorphic computing systems. 
    more » « less