skip to main content

Title: Climate‐Driven Increases in Stream Metal Concentrations in Mineralized Watersheds Throughout the Colorado Rocky Mountains, USA

Increasing stream metal concentrations apparently caused by climate warming have been reported for a small number of mountain watersheds containing hydrothermally altered bedrock with abundant sulfide minerals (mineralized watersheds). Such increases are concerning and could negatively impact downstream ecosystem health, water resources, and mine‐site remediation efforts. However, the pervasiveness and typical magnitude of these trends remain uncertain. We aggregated available streamwater chemistry data collected from late summer and fall over the past 40 years for 22 mineralized watersheds throughout the Colorado Rocky Mountains. Temporal trend analysis performed using the Regional Kendall Test indicates significant regional upward trends of ∼2% of the site median per year for sulfate, zinc, and copper concentrations in the 17 streams affected by acid rock drainage (ARD; median pH ≤ 5.5), equivalent to concentrations roughly doubling over the past 30 years. An examination of potential load trends utilizing streamflow data from eight “index gages” located near the sample sites provides strong support for regionally increasing sulfate and metal loads in ARD‐affected streams, particularly at higher elevations. Declining streamflows are likely contributing to regionally increasing concentrations, but increasing loads appear to be on average an equal or greater contributor. Comparison of selected site characteristics with site concentration trend magnitudes shows the highest correlation for mean annual air temperature and mean elevation (R2of 0.42 and 0.35, respectively, with all others being ≤0.14). Future research on climate‐driven controlling mechanisms should therefore focus on processes such as melting of frozen ground directly linked to site mean temperature and elevation.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High elevation alpine ecosystems—the ‘water towers of the world’—provide water for human populations around the globe. Active geomorphic features such as glaciers and permafrost leave alpine ecosystems susceptible to changes in climate which could also lead to changing biogeochemistry and water quality. Here, we synthesize recent changes in high-elevation stream chemistry from multiple sites that demonstrate a consistent and widespread pattern of increasing sulfate and base cation concentrations or fluxes. This trend has occurred over the past 30 years and is consistent across multiple sites in the Rocky Mountains of the United States, western Canada, the European Alps, the Icelandic Shield, and the Himalayas in Asia. To better understand these recent changes and to examine the potential causes of increased sulfur and base cation concentrations in surface waters, we present a synthesis of global records as well as a high resolution 33 year record of atmospheric deposition and river export data from a long-term ecological research site in Colorado, USA. We evaluate which factors may be driving global shifts in stream chemistry including atmospheric deposition trends and broad climatic patterns. Our analysis suggests that recent changes in climate may be stimulating changes to hydrology and/or geomorphic processes, which in turn lead to accelerated weathering of bedrock. This cascade of effects has broad implications for the chemistry and quality of important surface water resources.

    more » « less
  2. Abstract

    The changing thermal state of permafrost is an important indicator of climate change in northern high latitude ecosystems. The seasonally thawed soil active layer thickness (ALT) overlying permafrost may be deepening as a consequence of enhanced polar warming and widespread permafrost thaw in northern permafrost regions (NPRs). The associated increase in ALT may have cascading effects on ecological and hydrological processes that impact climate feedback. However, past NPR studies have only provided a limited understanding of the spatially continuous patterns and trends of ALT due to a lack of long-term high spatial resolution ALT data across the NPR. Using a suite of observational biophysical variables and machine learning (ML) techniques trained with availablein situALT network measurements (n= 2966 site-years), we produced annual estimates of ALT at 1 km resolution over the NPR from 2003 to 2020. Our ML-derived ALT dataset showed high accuracy (R2= 0.97) and low bias when compared within situALT observations. We found the ALT distribution to be most strongly affected by local soil properties, followed by topographic elevation and land surface temperatures. Pair-wise site-level evaluation between our data-driven ALT with Circumpolar Active Layer Monitoring data indicated that about 80% of sites had a deepening ALT trend from 2003 to 2020. Based on our long-term gridded ALT data, about 65% of the NPR showed a deepening ALT trend, while the entire NPR showed a mean deepening trend of 0.11 ± 0.35 cm yr−1[25%–75% quantile: (−0.035, 0.204) cm yr−1]. The estimated ALT trends were also sensitive to fire disturbance. Our new gridded ALT product provides an observationally constrained, updated understanding of the progression of thawing and the thermal state of permafrost in the NPR, as well as the underlying environmental drivers of these trends.

    more » « less
  3. Abstract

    Nitrate legacy is affecting groundwater sources across the tropics. This study describes isotopic and ionic spatial trends across a tropical, fractured, volcanic multi‐aquifer system in central Costa Rica in relation to land use change over four decades. Springs and wells (from 800 to 2,400 m asl) were sampled for NO3and Clconcentrations, δ18Owater, δ15NNO3, and δ18ONO3. A Bayesian isotope mixing model was used to estimate potential source contributions to the nitrate legacy in groundwater. Land use change was evaluated using satellite imagery from 1979 to 2019. The lower nitrate concentrations (<1 mg/L NO3N) were reported in headwater springs near protected forested areas, while greater concentrations (up to ∼63 mg/L) were reported in wells (mid‐ and low‐elevation sites in the unconfined unit) and low‐elevation springs. High‐elevation springs were characterized by low Cland moderate NO3/Clratios, indicating the potential influence of soil nitrogen (SN) inputs. Wells and low‐elevation springs exhibited greater NO3/Clratios and Clconcentrations above 100 μmol/L. Bayesian calculations suggest a mixture of sewage (domestic septic tanks), SN (forested recharge areas), and chemical fertilizers (coffee plantations), as a direct result of abrupt land use change in the last 40 years. Our results confirm the incipient trend in increasing groundwater nitrogen and highlight the urgent need for a multi‐municipal plan to transition from domestic septic tanks to regional sewage treatment and sustainable agricultural practices to prevent future groundwater quality degradation effectively.

    more » « less
  4. Marine phytoplankton are primary producers in ocean ecosystems and emit dimethyl sulfide (DMS) into the atmosphere. DMS emissions are the largest biological source of atmospheric sulfur and are one of the largest uncertainties in global climate modeling. DMS is oxidized to methanesulfonic acid (MSA), sulfur dioxide, and hydroperoxymethyl thioformate, all of which can be oxidized to sulfate. Ice core records of MSA are used to investigate past DMS emissions but rely on the implicit assumption that the relative yield of oxidation products from DMS remains constant. However, this assumption is uncertain because there are no long-term records that compare MSA to other DMS oxidation products. Here, we share the first long-term record of both MSA and DMS-derived biogenic sulfate concentration in Greenland ice core samples from 1200 to 2006 CE. While MSA declines on average by 0.2 µg S kg–1over the industrial era, biogenic sulfate from DMS increases by 0.8 µg S kg–1. This increasing biogenic sulfate contradicts previous assertions of declining North Atlantic primary productivity inferred from decreasing MSA concentrations in Greenland ice cores over the industrial era. The changing ratio of MSA to biogenic sulfate suggests that trends in MSA could be caused by time-varying atmospheric chemistry and that MSA concentrations alone should not be used to infer past primary productivity.

    more » « less
  5. Whiteface Mountain is home to an historical cloud water monitoring site, with cloud water collection dating as far back as the 1970s. The cloud collection was largely founded to investigate and monitor the growing problems associated with acid deposition with regular monitoring beginning in 1994 and continuing to this date. Findings from sites like Whiteface Mountain help contributed to the Clean Air Act Amendments of 1990s which contributed to significant reductions in emissions of SO2 and NOx, leading to significant decreases in SO4 and NO3 concentrations in both Whiteface Mountain cloud water and NADP National Trend Network sites nationwide. Recently, a significant milestone for acid deposition was reached at WFM: median concentrations of Ca were higher than SO4 concentrations, with a correspondingly high median pH of 6.3 in 2020. Additionally, there are increasing trends in Ca, K, Mg, and potentially total organic carbon, while NH4 and NO3 exhibit no trend. These changes point to a considerably different chemical system that have important implications for not only acid deposition but for nitrogen deposition, base cation deposition, and secondary organic and inorganic aerosol formation. This presentation will discuss the significant changes to major base cations and organic carbon (total organic carbon and organic acids) and their inter-relationships. Statistical techniques such as factor analysis and positive matrix factorization will be used for source apportionment. Comparisons of cloud composition will be made with regional NADP National Trend Network sites to investigate the potential changes in base cation deposition. Lastly, future implications will be discussed for air quality, ecosystem health, and climate. 
    more » « less