skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Visual accuracy dominates over haptic speed for state estimation of a partner during collaborative sensorimotor interactions
Physical collaboration between two or more individuals involves both visual and haptic feedback. Here, we investigated how visual and haptic feedback is used to estimate the movements of a partner during a collaboration task. Our experimental and computational modeling results parsimoniously support the notion that greater visual accuracy is more important than faster yet noisier haptic feedback when estimating the state of a partner.  more » « less
Award ID(s):
2146888
PAR ID:
10498678
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Journal of Neurophysiology
Date Published:
Journal Name:
Journal of Neurophysiology
Volume:
130
Issue:
1
ISSN:
0022-3077
Page Range / eLocation ID:
23 to 42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Haptic feedback provided in the axis of a motor task cannot be removed without changing the motor task itself. Haptic feedback couples the biomechanics of the backdrivable body to the dynamics of the environment and establishes a conduit for both power and information exchanges. To isolate the roles of haptic feedback in information exchange and power exchange, we devised a task without haptic feedback that preserved the motor challenge of controlling the coupled dynamics. We placed an identified model of a participant's biomechanics in the virtual environment and coupled it to the original task dynamics. Visual feedback was provided to substitute for the missing haptic feedback. We compared the performance of N=5 participants in the same motor task with and without haptic feedback and in the new task without haptic feedback. The presence of the coupled dynamics in the task predicted the match across conditions rather than the feedback modality. Our results provide support to the idea that rather than controlling their environment, humans control the coupled dynamics of their body and environment. 
    more » « less
  2. Touch is often omitted or viewed as unnecessary in digital learning. Lack of touch feedback limits the accessibility and multimodal capacity of digital educational content. Touchscreens with vibratory, haptic feedback are prevalent, yet this kind of feedback is often under-utilized. This work provides initial investigations into the design, development, and use of vibratory feedback within multimodal, interactive, educational simulations on touchscreen devices by learners with and without visual impairments. The objective of this work is to design and evaluate different haptic paradigms that could support interaction and learning in educational simulations. We investigated the implementation of four haptic paradigms in two physics simulations. Interviews were conducted with eight learners (five sighted learners; three learners with visual impairments) on one simulation and initial results are shared. We discuss the learner outcomes of each paradigm and how they impact design and development moving forward. 
    more » « less
  3. Active, exploratory touch supports human perception of a broad set of invisible physical surface properties. When traditionally hands-on tasks, such as medical palpation of soft tissue, are translated to virtual settings, haptic perception is throttled by technological limitations, and much of the richness of active exploration can be lost. The current research seeks to restore some of this richness with advanced methods of passively conveying haptic data alongside synchronized visual feeds. A robotic platform presented haptic stimulation modeled after the relative motion between a hypothetical physician's hands and artificial tissue samples during palpation. Performance in discriminating the sizes of hidden “tumors” in these samples was compared across display conditions which included haptic feedback and either: 1) synchronized video of the participant's hand, recorded during active exploration; 2) synchronized video of another person's hand; 3) no accompanying video. The addition of visual feedback did not improve task performance, which was similar whether receiving relative motion recorded from one's own hand or someone else's. While future research should explore additional strategies to improve task performance, this initial attempt to translate active haptic sensations to passive presentations indicates that visuo-haptic feedback can induce reliable haptic perceptions of motion in a stationary passive hand. 
    more » « less
  4. Current commercially available robotic minimally invasive surgery (RMIS) platforms provide no haptic feedback of tool interactions with the surgical environment. As a consequence, novice robotic surgeons must rely exclusively on visual feedback to sense their physical interactions with the surgical environment. This technical limitation can make it challenging and time-consuming to train novice surgeons to proficiency in RMIS. Extensive prior research has demonstrated that incorporating haptic feedback is effective at improving surgical training task performance. However, few studies have investigated the utility of providing feedback of multiple modalities of haptic feedback simultaneously (multi-modality haptic feedback) in this context, and these studies have presented mixed results regarding its efficacy. Furthermore, the inability to generalize and compare these mixed results has limited our ability to understand why they can vary significantly between studies. Therefore, we have developed a generalized, modular multi-modality haptic feedback and data acquisition framework leveraging the real-time data acquisition and streaming capabilities of the Robot Operating System (ROS). In our preliminary study using this system, participants complete a peg transfer task using a da Vinci robot while receiving haptic feedback of applied forces, contact accelerations, or both via custom wrist-worn haptic devices. Results highlight the capability of our system in running systematic comparisons between various single and dual-modality haptic feedback approaches. 
    more » « less
  5. To investigate preferences for mobile and wearable sound awareness systems, we conducted an online survey with 201 DHH participants. The survey explores how demographic factors affect perceptions of sound awareness technologies, gauges interest in specific sounds and sound characteristics, solicits reactions to three design scenarios (smartphone, smartwatch, head-mounted display) and two output modalities (visual, haptic), and probes issues related to social context of use. While most participants were highly interested in being aware of sounds, this interest was modulated by communication preference--that is, for sign or oral communication or both. Almost all participants wanted both visual and haptic feedback and 75% preferred to have that feedback on separate devices (e.g., haptic on smartwatch, visual on head-mounted display). Other findings related to sound type, full captions vs. keywords, sound filtering, notification styles, and social context provide direct guidance for the design of future mobile and wearable sound awareness systems. 
    more » « less