skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: Global estimation of range resolved thermodynamic profiles from micropulse differential absorption lidar

We demonstrate thermodynamic profile estimation with data obtained using the MicroPulse DIAL such that the retrieval is entirely self contained. The only external input is surface meteorological variables obtained from a weather station installed on the instrument. The estimator provides products of temperature, absolute humidity and backscatter ratio such that cross dependencies between the lidar data products and raw observations are accounted for and the final products are self consistent. The method described here is applied to a combined oxygen DIAL, potassium HSRL, water vapor DIAL system operating at two pairs of wavelengths (nominally centered at 770 and 828 nm). We perform regularized maximum likelihood estimation through the Poisson Total Variation technique to suppress noise and improve the range of the observations. A comparison to 119 radiosondes indicates that this new processing method produces improved temperature retrievals, reducing total errors to less than 2 K below 3 km altitude and extending the maximum altitude of temperature retrievals to 5 km with less than 3 K error. The results of this work definitively demonstrates the potential for measuring temperature through the oxygen DIAL technique and furthermore that this can be accomplished with low-power semiconductor-based lidar sensors.

 
more » « less
NSF-PAR ID:
10498829
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
32
Issue:
8
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 14442
Size(s):
Article No. 14442
Sponsoring Org:
National Science Foundation
More Like this
  1. This work presents the first demonstration of atmospheric temperature measurement using the differential absorption lidar (DIAL) technique. While DIAL is routinely used to measure atmospheric gases such as ozone and water vapor, almost no success has been found in using DIAL to measure atmospheric temperature. Attempts to measure temperature using a well-mixed gas like oxygen (O2) have largely failed based on a need for quantitative ancillary measurements of water vapor and atmospheric aerosols. Here, a lidar is described and demonstrated that simultaneously measuresO2absorption, water vapor number density, and aerosol backscatter ratio. This combination of measurements allows for the first measurements of atmospheric temperature with useful accuracy. DIAL temperature measurements are presented to an altitude of 4kmwith 225mand 30minresolution with accuracy better than 3 K. DIAL temperature data is compared to a co-located Raman lidar system and radiosondes to evaluate the system’s performance. Finally, an analysis of current performance characteristics is presented, which highlights pathways for future improvement of this proof-of-concept instrument.

     
    more » « less
  2. Abstract. The micropulse differential absorption lidar (MPD) was developed at Montana State University (MSU) and the National Center for Atmospheric Research (NCAR) to perform range-resolved water vapor (WV) measurements using low-power lasers and photon-counting detectors. The MPD has proven to produce accurate WV measurements up to 6 km altitude. However, the MPD's ability to produce accurate higher-altitude WV measurements is impeded by the current standard differential absorption lidar (DIAL) retrieval methods. These methods are built upon a fundamental methodology that algebraically solves for the WV using the MPD forward models and noisy observations, which exacerbates any random noise in the lidar observations. The work in this paper introduces the adapted Poisson total variation (PTV) specifically for the MPD instrument. PTV was originally developed for a ground-based high spectral resolution lidar, and this paper reports on the adaptations that were required in order to apply PTV on MPD WV observations. The adapted PTV method, coined PTV-MPD, extends the maximum altitude of the MPD from 6 to 8 km and substantially increases the accuracy of the WV retrievals starting above 2 km. PTV-MPD achieves the improvement by simultaneously denoising the MPD noisy observations and inferring the WV by separating the random noise from the non-random WV. An analysis with 130 radiosonde (RS) comparisons shows that the relative root-mean-square difference (RRMSE) of WV measurements between RS and PTV-MPD exceeds 100 % between 6 and 8 km, whereas the RRMSE between RS and the standard method exceeds 100 % near 3 km. In addition, we show that by employing PTV-MPD, the MPD is able to extend its useful range of WV estimates beyond that of the ARM Southern Great Plains Raman lidar (RRMSE exceeding 100 % between 3 and 4 km); the Raman lidar has a power-aperture product 500 times greater than that of the MPD. 
    more » « less
  3. Abstract The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) was launched aboard NASA’s Ionospheric Connection (ICON) Explorer satellite in October 2019 to measure winds and temperatures on the limb in the upper mesosphere and lower thermosphere (MLT). Temperatures are observed using the molecular oxygen atmospheric band near 763 nm from 90–127 km altitude in the daytime and 90–108 km in the nighttime. Here we describe the measurement approach and methodology of the temperature retrieval, including unique on-orbit operations that allow for a better understanding of the instrument response. The MIGHTI measurement approach for temperatures is distinguished by concurrent observations from two different sensors, allowing for two self-consistent temperature products. We compare the MIGHTI temperatures against existing MLT space-borne and ground-based observations. The MIGHTI temperatures are within 7 K of these observations on average from 90–95 km throughout the day and night. In the daytime on average from 99–105 km, MIGHTI temperatures are higher than coincident observations by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on NASA’s TIMED satellite by 18 K. Because the difference between the MIGHTI and SABER observations is predominantly a constant bias at a given altitude, conclusions of scientific analyses that are based on temperature variations are largely unaffected. 
    more » « less
  4. Abstract

    We present retrievals of infrared spectral surface emissivities spanning the far infrared and mid‐infrared from aircraft observations over Greenland, taken at an altitude of 9.2 km above sea level. We describe the flight campaign, available measurements, and the retrieval method. The principal barriers to reducing uncertainty in the emissivity retrievals are found to be instrumental noise and our ability to simultaneously retrieve the underlying surface temperature. However, our results indicate that using the instrumentation available to us it is possible to retrieve emissivities from altitude with an uncertainty of ~0.02 or better across much of the infrared. They confirm that the far‐infrared emissivity of snow and ice surfaces can depart substantially from unity, reaching values as low as 0.9 between 400 and 450 cm−1. They also show good consistency with retrievals from the same flight made from near‐surface observations giving confidence in the methodology used and the results obtained for this more challenging viewing configuration. To the best of our knowledge, this is the first time that far‐infrared surface emissivity has been retrieved from altitude and demonstrates that the methodology has the potential to be extended to planned satellite far‐infrared missions.

     
    more » « less
  5. Abstract

    Rotational temperatures in the Mesosphere‐Lower Thermosphere region are estimated by utilizing the OH(6,2) Meinel band nightglow data obtained with an Ebert‐Fastie spectrometer (EFS) operated at Arecibo Observatory (AO), Puerto Rico (18.35°N, 66.75°W) during February‐April 2005. To validate the estimated rotational temperatures, a comparison with temperatures obtained from a co‐located Potassium Temperature Lidar (K‐Lidar) and overhead passes of the Sounding of the Atmosphere by Broadband Emission Radiometry (SABER) instrument onboard NASA's Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite is performed. Two types of weighting functions are applied to the K‐Lidar temperature profiles to compare them with EFS temperatures. The first type has a fixed peak altitude and a fixed full width at half maximum (FWHM) for the whole night. In the second type, the peak altitude and FWHM vary with the local time. SABER measurements are utilized to estimate the OH(6,2) band peak altitudes and FWHMs as a function of local time and considerable temporal variations are observed in both the parameters. The average temperature differences between the EFS and K‐Lidar obtained with both types of weighting functions are comparable with previously published results from different latitude‐longitude sectors. We found that the temperature comparison improves when the time‐varying weighting functions are considered. Comparison between EFS, K‐Lidar, and SABER temperatures reveal that on average, SABER temperatures are lower than the other two instruments and K‐Lidar temperatures compare better with SABER in comparison to EFS. Such a detailed study using the AO EFS data has not been carried out previously.

     
    more » « less