skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heterogeneous Basal Thermal Conditions Underpinning the Adélie‐George V Coast, East Antarctica
Abstract Adélie‐George V Land in East Antarctica, encompassing the vast Wilkes Subglacial Basin, has a configuration that could be prone to ice sheet instability: the basin's retrograde bed slope could make its marine terminating glaciers vulnerable to warm seawater intrusion and irreversible retreat under predicted climate forcing. However, future projections are uncertain, due in part to limited subglacial observations near the grounding zone. Here, we develop a novel statistical approach to characterize subglacial conditions from radar sounding observations. Our method reveals intermixed frozen and thawed bed within 100 km of the grounding‐zone near the Wilkes Subglacial Basin outflow, and enables comparisons to ice sheet model‐inferred thermal states. The signs of intermixed or near thawed conditions raises the possibility that changes in basal thermal state could impact the stability of Adélie‐George V Land, adding to the region's potentially vulnerable topographic configuration and sensitivity to ocean forcing driven grounding line retreat.  more » « less
Award ID(s):
1745137
PAR ID:
10498846
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
2
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Antarctic ice sheet blankets >99% of the continent and limits our ability to study how subglacial geology and topography have evolved through time. Ice-rafted dropstones derived from the Antarctic subglacial continental interior at different times during the late Cenozoic provide valuable thermal history proxies to understand this geologic history. We applied multiple thermochronometers covering a range of closure temperatures (60–800 °C) to 10 dropstones collected during Integrated Ocean Drilling Program (IODP) Expedition 318 in order to explore the subglacial geology and thermal and exhumation history of the Wilkes Subglacial Basin. The Wilkes Subglacial Basin is a key target for study because ice-sheet models show it was an area of ice-sheet retreat that significantly contributed to sea-level rise during past warm periods. Depositional ages of dropstones range from early Oligocene to late Pleistocene and have zircon U-Pb or 40Ar/39Ar ages indicating sources from the Mertz shear zone, Adélie craton, Ferrar large igneous province, and Millen schist belt. Dropstones from the Mertz shear zone and Adélie craton experienced three cooling periods (1700–1500 Ma; 500–280 Ma; 34–0 Ma) and two periods of extremely slow cooling rates (1500–500 Ma; 280–34 Ma). Low-temperature thermochronometers from seven of the dropstones record cooling during the Paleozoic, potentially recording the Ross or Pan-African orogenies, and during the Mesozoic, potentially recording late Paleozoic to Mesozoic rifting. These dropstones then resided within ~500 m of the surface since the late Paleozoic and early Mesozoic. In contrast, two dropstones deposited during the mid-Pliocene, one from the Mertz shear zone and one from Adélie craton, show evidence for localized post-Eocene glacial erosion of ≥2 km. 
    more » « less
  2. Abstract. Antarctic ice shelves buttress the flow of the ice sheet but are vulnerable to increased basal melting from contact with a warming ocean and increased mass loss from calving due to changing flow patterns. Channels and similar features at the bases of ice shelves have been linked to enhanced basal melting and observed to intersect the grounding zone, where the greatest melt rates are often observed. The ice shelf of Thwaites Glacier is especially vulnerable to basal melt and grounding zone retreat because the glacier has a retrograde bed leading to a deep trough below the grounded ice sheet. We use digital surface models from 2010–2022 to investigate the evolution of its ice-shelf channels, grounding zone position, and the interactions between them. We find that the highest sustained rates of grounding zone retreat (up to 0.7 km yr−1) are associated with high basal melt rates (up to ∼250 m yr−1) and are found where ice-shelf channels intersect the grounding zone, especially atop steep local retrograde slopes where subglacial channel discharge is expected. We find no areas with sustained grounding zone advance, although some secular retreat was distal from ice-shelf channels. Pinpointing other locations with similar risk factors could focus assessments of vulnerability to grounding zone retreat. 
    more » « less
  3. Abstract Thwaites Glacier (TG) plays an important role in future sea-level rise (SLR) contribution from the West Antarctic Ice Sheet. Recent observations show that TG is losing mass, and its grounding zone is retreating. Previous modeling has produced a wide range of results concerning whether, when, and how rapidly further retreat will occur under continued warming. These differences arise at least in part from ill-constrained processes, including friction from the bed, and future atmosphere and ocean forcing affecting ice-shelf and grounding-zone buttressing. Here, we apply the Ice Sheet and Sea-level System Model (ISSM) with a range of specifications of basal sliding behavior in response to varying ocean forcing. We find that basin-wide bed character strongly affects TG's response to sub-shelf melt by modulating how changes in driving stress are balanced by the bed as the glacier responds to external forcing. Resulting differences in dynamic thinning patterns alter modeled grounding-line retreat across Thwaites' catchment, affecting both modeled rates and magnitudes of SLR contribution from this critical sector of the ice sheet. Bed character introduces large uncertainties in projections of TG under equal external forcing, pointing to this as a crucial constraint needed in predictive models of West Antarctica. 
    more » « less
  4. Abstract Sea-level rise projections rely on accurate predictions of ice mass loss from Antarctica. Climate change promotes greater mass loss by destabilizing ice shelves and accelerating the discharge of upstream grounded ice. Mass loss is further exacerbated by mechanisms such as the Marine Ice Sheet Instability and the Marine Ice Cliff Instability. However, the effect of basal thermal state changes of grounded ice remains largely unexplored. Here, we use numerical ice sheet modeling to investigate how warmer basal temperatures could affect the Antarctic ice sheet mass balance. We find increased mass loss in response to idealized basal thawing experiments run over 100 years. Most notably, frozen-bed patches could be tenuously sustaining the current ice configuration in parts of George V, Adélie, Enderby, and Kemp Land regions of East Antarctica. With less than 5 degrees of basal warming, these frozen patches may begin to thaw, producing new loci of mass loss. 
    more » « less
  5. Abstract. Frontal ablation has caused 32 %–66 % of Greenland Ice Sheet mass loss since 1972, and despite its importance in driving terminus change, ocean thermal forcing remains crudely incorporated into large-scale ice sheet models. In Greenland, local fjord-scale processes modify the magnitude of thermal forcing at the ice–ocean boundary but are too small scale to be resolved in current global climate models. For example, simulations used in the Ice Sheet Intercomparison Project for CMIP6 (ISMIP6) to predict future ice sheet change rely on the extrapolation of regional ocean water properties into fjords to drive terminus ablation. However, the accuracy of this approach has not previously been tested due to the scarcity of observations in Greenland fjords, as well as the inability of fjord-scale models to realistically incorporate icebergs. By employing the recently developed IceBerg package within the Massachusetts Institute of Technology general circulation model (MITgcm), we here evaluate the ability of ocean thermal forcing parameterizations to predict thermal forcing at tidewater glacier termini. This is accomplished through sensitivity experiments using a set of idealized Greenland fjords, each forced with equivalent ocean boundary conditions but with varying tidal amplitudes, subglacial discharge, iceberg coverage, and bathymetry. Our results indicate that the bathymetric obstruction of external water is the primary control on near-glacier thermal forcing, followed by iceberg submarine melting. Despite identical ocean boundary conditions, we find that the simulated fjord processes can modify grounding line thermal forcing by as much as 3 °C, the magnitude of which is largely controlled by the relative depth of bathymetric sills to the Polar Water–Atlantic Water thermocline. However, using a common adjustment for fjord bathymetry we can still predict grounding line thermal forcing within 0.2 °C in our simulations. Finally, we introduce new parameterizations that additionally account for iceberg-driven cooling that can accurately predict interior fjord thermal forcing profiles both in iceberg-laden simulations and in observations from Kangiata Sullua (Ilulissat Icefjord). 
    more » « less