skip to main content


This content will become publicly available on November 26, 2024

Title: Rethinking Single Sign-On: A Reliable and Privacy-Preserving Alternative with Verifiable Credentials
Single sign-on (SSO) has provided convenience to users in the web domain as it can authorize a user to access various resource providers (RPs) using the identity provider (IdP)'s unified authentication portal. However, SSO also faces security problems including IdP single-point failure and the privacy associated with identity linkage. In this paper, we present the initial design of an alternative SSO solution called VC-SSO to address the security and privacy problems while preserving SSO's usability. VC-SSO leverages the recently emerged decentralized identifier (DID) and verifiable credential (VC) framework in that a user only needs to authenticate with the IdP once to obtain a VC and then may generate multiple verifiable presentations (VPs) from the VC to access different RPs. This is based on the design that each RP has established a smart contract with the IdP specifying the service agreement and the VP schema for user authorization. We hope the proposed VC-SSO design marks the first step toward a future SSO system that provides strong reliability and privacy to users under adversarial conditions.  more » « less
Award ID(s):
2247561
NSF-PAR ID:
10498908
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the 10th ACM Workshop on Moving Target Defense
Page Range / eLocation ID:
25 to 28
Subject(s) / Keyword(s):
["Single sign-on, privacy, authentication, verifiable credential"]
Format(s):
Medium: X
Location:
Copenhagen Denmark
Sponsoring Org:
National Science Foundation
More Like this
  1. Interdependent privacy (IDP) violations among users occur at a massive scale on social media, as users share or re-share potentially sensitive photos and information about other people without permission. Given that IDP represents a collective moral concern, an ethics of care (or “care ethics”) can inform interventions to promote online privacy. Applied to cyber security and privacy, ethics of care theory puts human relationships at the center of moral problems, where caring-about supports conditions of caring-for and, in turn, protects interpersonal relationships. This position paper explores design implications of an ethics of care framework in the context of IDP preservation. First, we argue that care ethics highlights the need for a network of informed stakeholders involved in content moderation strategies that align with public values. Second, an ethics of care framework calls for psychosocial interventions at the user-level aimed toward promoting more responsible IDP decision-making among the general public. In conclusion, ethics of care has potential to provide coherence in understanding the people involved in IDP, the nature of IDP issues, and potential solutions, in turn, motivating new directions in IDP research. 
    more » « less
  2. Information-centric networking (ICN) replaces the widely used host-centric networking paradigm in communication networks (e.g., Internet and mobile ad hoc networks) with an information-centric paradigm, which prioritizes the delivery of named content, oblivious of the contents' origin. Content and client security, provenance, and identity privacy are intrinsic by design in the ICN paradigm as opposed to the current host centric paradigm where they have been instrumented as an afterthought. However, given its nascency, the ICN paradigm has several open security and privacy concerns. In this paper, we survey the existing literature in security and privacy in ICN and present open questions. More specifically, we explore three broad areas: 1) security threats; 2) privacy risks; and 3) access control enforcement mechanisms. We present the underlying principle of the existing works, discuss the drawbacks of the proposed approaches, and explore potential future research directions. In security, we review attack scenarios, such as denial of service, cache pollution, and content poisoning. In privacy, we discuss user privacy and anonymity, name and signature privacy, and content privacy. ICN's feature of ubiquitous caching introduces a major challenge for access control enforcement that requires special attention. We review existing access control mechanisms including encryption-based, attribute-based, session-based, and proxy re-encryption-based access control schemes. We conclude the survey with lessons learned and scope for future work. 
    more » « less
  3. As part of its ongoing efforts to meet the increased spectrum demand, the Federal Communications Commission (FCC) has recently opened up 150 MHz in the 3.5 GHz band for shared wireless broadband use. Access and operations in this band, aka Citizens Broadband Radio Service (CBRS), will be managed by a dynamic spectrum access system (SAS) to enable seamless spectrum sharing between secondary users (SU s) and incumbent users. Despite its benefits, SAS’s design requirements, as set by FCC, present privacy risks to SU s, merely because SU s are required to share sensitive operational information (e.g., location, identity, spectrum usage) with SAS to be able to learn about spectrum availability in their vicinity. In this paper, we propose TrustSAS, a trustworthy framework for SAS that synergizes state-of-the-art cryptographic techniques with blockchain technology in an innovative way to address these privacy issues while complying with FCC’s regulatory design requirements. We analyze the security of our framework and evaluate its performance through analysis, simulation and experimentation. We show that TrustSAS can offer high security guarantees with reasonable overhead, making it an ideal solution for addressing SU s’ privacy issues in an operational SAS environment. 
    more » « less
  4. Research on keystroke dynamics has the good potential to offer continuous authentication that complements conventional authentication methods in combating insider threats and identity theft before more harm can be done to the genuine users. Unfortunately, the large amount of data required by free-text keystroke authentication often contain personally identifiable information, or PII, and personally sensitive information, such as a user's first name and last name, username and password for an account, bank card numbers, and social security numbers. As a result, there are privacy risks associated with keystroke data that must be mitigated before they are shared with other researchers. We conduct a systematic study to remove PII's from a recent large keystroke dataset. We find substantial amounts of PII's from the dataset, including names, usernames and passwords, social security numbers, and bank card numbers, which, if leaked, may lead to various harms to the user, including personal embarrassment, blackmails, financial loss, and identity theft. We thoroughly evaluate the effectiveness of our detection program for each kind of PII. We demonstrate that our PII detection program can achieve near perfect recall at the expense of losing some useful information (lower precision). Finally, we demonstrate that the removal of PII's from the original dataset has only negligible impact on the detection error tradeoff of the free-text authentication algorithm by Gunetti and Picardi. We hope that this experience report will be useful in informing the design of privacy removal in future keystroke dynamics based user authentication systems. 
    more » « less
  5. Mobile tracking has long been a privacy problem, where the geographic data and timestamps gathered by mobile network operators (MNOs) are used to track the locations and movements of mobile subscribers. Additionally, selling the geolocation information of subscribers has become a lucrative business. Many mobile carriers have violated user privacy agreements by selling users’ location history to third parties without user consent, exacerbating privacy issues related to mobile tracking and profiling. This paper presents AAKA, an anonymous authentication and key agreement scheme designed to protect against mobile tracking by honest-but-curious MNOs. AAKA leverages anonymous credentials and introduces a novel mobile authentication protocol that allows legitimate subscribers to access the network anonymously, without revealing their unique (real) IDs. It ensures the integrity of user credentials, preventing forgery, and ensures that connections made by the same user at different times cannot be linked. While the MNO alone cannot identify or profile a user, AAKA enables identification of a user under legal intervention, such as when the MNOs collaborate with an authorized law enforcement agency. Our design is compatible with the latest cellular architecture and SIM standardized by 3GPP, meeting 3GPP’s fundamental security requirements for User Equipment (UE) authentication and key agreement processes. A comprehensive security analysis demonstrates the scheme’s effectiveness. The evaluation shows that the scheme is practical, with a credential presentation generation taking∼ 52 ms on a constrained host device equipped with a standard cellular SIM. 
    more » « less