Abstract Electroosmotic flow (EOF) is the bulk flow of solution in a capillary or microchannel induced by an applied electric potential. For capillary and microchip electrophoresis, the EOF enables analysis of both cations and anions in one separation and can be varied to modify separation speed and resolution. The EOF arises from an electrical double layer at the capillary wall and is normally controlled through the pH and ionic strength of the background buffer or with the use of additives. Understanding and controlling the electrical double layer is therefore critical for maintaining acceptable repeatability during method development. Surprisingly, in fused silica capillaries at low pH, studies observe an EOF even though the capillary surface should be neutralized. Previous work has suggested the presence of an “induced electroosmotic flow” from radial electric fields generated across the capillary wall due to the separation voltage and grounded components external to the capillary. Using thin‐wall (15 µm) fused silica separation capillaries to facilitate the study of radial fields, we show that the EOF mobility depends on both the separation voltage and the location of external grounds. This is consistent with the induced EOF model, in which radial electric fields embed positive charges at the capillary walls to create an electrical double layer. The magnitude of the effect is characterized and shown to have long‐range influences that are difficult to completely null by moving grounded components away from the separation capillary. Instead, active EOF control using externally applied potentials or a passive approach using a negative separation voltage are discussed as two possible methods for controlling the induced EOF. Both methods can reverse the EOF and improve the resolution and peak efficiency in amino acid separations.
more »
« less
Electro-osmotic flow in nanoconfinement: Solid-state and protein nanopores
Electro-osmotic flow (EOF) is a phenomenon where fluid motion occurs in porous materials or micro/nano-channels when an external electric field is applied. In the particular example of single-molecule electrophoresis using single nanopores, the role of EOF on the translocation velocity of the analyte molecule through the nanopore is not fully understood. The complexity arises from a combination of effects from hydrodynamics in restricted environments, electrostatics emanating from charge decorations and geometry of the pores. We address this fundamental issue using the Poisson–Nernst–Planck and Navier–Stokes (PNP–NS) equations for cylindrical solid-state nanopores and three representative protein nanopores (α-hemolysin, MspA, and CsgG). We present the velocity profiles inside the nanopores as a function of charge decoration and geometry of the pore and applied electric field. We report several unexpected results: (a) The apparent charges of the protein nanopores are different from their net charge and the surface charge of the whole protein geometry, and the net charge of inner surface is consistent with the apparent charge. (b) The fluid velocity depends non-monotonically on voltage. The three protein nanopores exhibit unique EOF and velocity–voltage relations, which cannot be simply deduced from their net charge. Furthermore, effective point mutations can significantly change both the direction and the magnitude of EOF. The present computational analysis offers an opportunity to further understand the origins of the speed of transport of charged macromolecules in restricted space and to design desirable nanopores for tuning the speed of macromolecules through nanopores.
more »
« less
- Award ID(s):
- 2309539
- PAR ID:
- 10498928
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 160
- Issue:
- 8
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)For organic semiconductor crystals exhibiting anisotropic charge transport along different crystallographic directions, nanoconfinement is a powerful strategy to control crystal orientation by aligning the fast crystallographic growth direction(s) with the unconfined axis(es) of nanoconfining scaffolds. Here, design rules are presented to relate crystal morphology, scaffold geometry, and orientation control in solution-processed small-molecule crystals. Specifically, organic semiconductor triisopropylsilylethynyl pyranthrene needle-like crystals with a dimensionality of n = 1 and perylene platelike crystals with n = 2 were grown from solution within nanoconfining scaffolds comprising cylindrical nanopores with a dimensionality of m = 1, representing one unconfined dimension along the cylinder axis, and those comprising nanopillar arrays with a dimensionality of m = 2. For m = n systems, native crystal growth habits were preserved while the crystal orientation in n = m direction(s) was dictated by the geometry of the scaffold. For n ≠ m systems, on the other hand, orientation control was restricted within a single plane, either parallel or perpendicular to the substrate surface. Intriguingly, control over crystal shape was also observed for perylene crystals grown in cylindrical nanopores ( n > m ). Within the nanopores, crystal growth was restricted along a single direction to form a needle-like morphology. Once growth proceeded above the scaffold surface, the crystals adopted their native growth habit to form asymmetric T-shaped single crystals with concave corners. These findings suggest that nanoporous scaffolds with spatially-varying dimensionalities can be used to grow single crystals of complex shapes.more » « less
-
To mimic the intricate and adaptive functionalities of biological ion channels, electrohydrodynamic ion transport has been studied extensively, albeit mostly, across uniformly charged nanochannels. Here, we analyze the ion transport under coupled electric field and pressure across heterogeneously charged nanopores with oppositely charged sections on their lateral surface. We only consider such pores with symmetric hourglass-like and cylindrical shapes to focus on the effects of the non-uniform surface charge distribution. Finite-element simulations of a continuum model demonstrate that a pressure applied in either direction of the pore-axis equally suppresses or amplifies the ionic conductance, depending on the electric field polarity, by distorting the quasi-static distribution of ions in the pore. The resulting anomalous mechanical deactivation and activation of ionic current under opposite voltage biases exhibit the functional modularity of our setup, while their intensities are highly tunable, substantially greater than those of analogous behaviors in other nanochannels, and fundamentally correlated to ionic current rectification (ICR) in our pores. A detailed study of ICR subsequently reveals its counterintuitive non-monotonous variations, in the pores, with the magnitude of applied voltage and the pore length, that can help optimize their diode-like behavior. We further illustrate that while the hourglass-shaped nanopores yield the more efficient mechanical suppressors of ion transport, their cylindrical analogs are the superior rectifiers and mechanical amplifiers of ion conduction. Therefore, this article provides a blueprint for the strategic design of nanofluidic circuits to attain a robust, modular, and tunable control of ion transport under external electrical and mechanical stimuli.more » « less
-
Electrical stimulation (ES) promotes healing of chronic epidermal wounds and delays degeneration of articular cartilage. Despite electrotherapeutic treatment of these non-excitable tissues, the mechanisms by which ES promotes repair are unknown. We hypothesize that a beneficial role of ES is dependent on electrokinetic perfusion in the extracellular space and that it mimics the effects of interstitial flow. In vivo , the extracellular space contains mixtures of extracellular proteins and negatively charged glycosaminoglycans and proteoglycans surrounding cells. While these anionic macromolecules promote water retention and increase mechanical support under compression, in the presence of ES they should also enhance electro-osmotic flow (EOF) to a greater extent than proteins alone. To test this hypothesis, we compare EOF rates between artificial matrices of gelatin (denatured collagen) with matrices of gelatin mixed with anionic polymers to mimic endogenous charged macromolecules. We report that addition of anionic polymers amplifies EOF and that a matrix comprised of 0.5% polyacrylate and 1.5% gelatin generates EOF with similar rates to those reported in cartilage. The enhanced EOF reduces mortality of cells at lower applied voltage compared to gelatin matrices alone. We also use modeling to describe the range of thermal changes that occur during these electrokinetic experiments and during electrokinetic perfusion of soft tissues. We conclude that the negative charge density of native extracellular matrices promotes electrokinetic perfusion during electrical therapies in soft tissues and may promote survival of artificial tissues and organs prior to vascularization and during transplantation.more » « less
-
Abstract A nanopore device is capable of providing single‐molecule level information of an analyte as they translocate through the sensing aperture—a nanometer‐sized through‐hole—under the influence of an applied electric field. In this study, a silicon nitride (SixNy)‐based nanopore was used to characterize the human serum transferrin receptor protein (TfR) under various applied voltages. The presence of dimeric forms of TfR was found to decrease exponentially as the applied electric field increased. Further analysis of monomeric TfR also revealed that its unfolding behaviors were positively dependent on the applied voltage. Furthermore, a comparison between the data of monomeric TfR and its ligand protein, human serum transferrin (hSTf), showed that these two protein populations, despite their nearly identical molecular weights, could be distinguished from each other by means of a solid‐state nanopore (SSN). Lastly, the excluded volumes of TfR were experimentally determined at each voltage and were found to be within error of their theoretical values. The results herein demonstrate the successful application of an SSN for accurately classifying monomeric and dimeric molecules while the two populations coexist in a heterogeneous mixture.more » « less
An official website of the United States government

