skip to main content


Title: Fast peak error correction algorithms for proteoform identification using top-down tandem mass spectra
Abstract Motivation

Proteoform identification is an important problem in proteomics. The main task is to find a modified protein that best fits the input spectrum. To overcome the combinatorial explosion of possible proteoforms, the proteoform mass graph and spectrum mass graph are used to represent the protein database and the spectrum, respectively. The problem becomes finding an optimal alignment between the proteoform mass graph and the spectrum mass graph. Peak error correction is an important issue for computing an optimal alignment between the two input mass graphs.

Results

We propose a faster algorithm for the error correction alignment of spectrum mass graph and proteoform mass graph problem and produce a program package TopMGFast. The newly designed algorithms require less space and running time so that we are able to compute global optimal alignments for the two input mass graphs in a reasonable time. For the local alignment version, experiments show that the running time of the new algorithm is reduced by 2.5 times. For the global alignment version, experiments show that the maximum mass errors between any pair of matched nodes in the alignments obtained by our method are within a small range as designed, while the alignments produced by the state-of-the-art method, TopMG, have very large maximum mass errors for many cases. The obtained alignment sizes are roughly the same for both TopMG and TopMGFast. Of course, TopMGFast needs more running time than TopMG. Therefore, our new algorithm can obtain more reliable global alignments within a reasonable time. This is the first time that global optimal error correction alignments can be obtained using real datasets.

Availability and implementation

The source code of the algorithm is available at https://github.com/Zeirdo/TopMGFast.

 
more » « less
PAR ID:
10498954
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
40
Issue:
4
ISSN:
1367-4811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Martelli, Pier Luigi (Ed.)
    Abstract Motivation

    Pairwise sequence alignment remains a fundamental problem in computational biology and bioinformatics. Recent advances in genomics and sequencing technologies demand faster and scalable algorithms that can cope with the ever-increasing sequence lengths. Classical pairwise alignment algorithms based on dynamic programming are strongly limited by quadratic requirements in time and memory. The recently proposed wavefront alignment algorithm (WFA) introduced an efficient algorithm to perform exact gap-affine alignment in O(ns) time, where s is the optimal score and n is the sequence length. Notwithstanding these bounds, WFA’s O(s2) memory requirements become computationally impractical for genome-scale alignments, leading to a need for further improvement.

    Results

    In this article, we present the bidirectional WFA algorithm, the first gap-affine algorithm capable of computing optimal alignments in O(s) memory while retaining WFA’s time complexity of O(ns). As a result, this work improves the lowest known memory bound O(n) to compute gap-affine alignments. In practice, our implementation never requires more than a few hundred MBs aligning noisy Oxford Nanopore Technologies reads up to 1 Mbp long while maintaining competitive execution times.

    Availability and implementation

    All code is publicly available at https://github.com/smarco/BiWFA-paper.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract Motivation

    The size of a genome graph—the space required to store the nodes, node labels and edges—affects the efficiency of operations performed on it. For example, the time complexity to align a sequence to a graph without a graph index depends on the total number of characters in the node labels and the number of edges in the graph. This raises the need for approaches to construct space-efficient genome graphs.

    Results

    We point out similarities in the string encoding mechanisms of genome graphs and the external pointer macro (EPM) compression model. We present a pair of linear-time algorithms that transform between genome graphs and EPM-compressed forms. The algorithms result in an upper bound on the size of the genome graph constructed in terms of an optimal EPM compression. To further reduce the size of the genome graph, we propose the source assignment problem that optimizes over the equivalent choices during compression and introduce an ILP formulation that solves that problem optimally. As a proof-of-concept, we introduce RLZ-Graph, a genome graph constructed based on the relative Lempel–Ziv algorithm. Using RLZ-Graph, across all human chromosomes, we are able to reduce the disk space to store a genome graph on average by 40.7% compared to colored compacted de Bruijn graphs constructed by Bifrost under the default settings. The RLZ-Graph scales well in terms of running time and graph sizes with an increasing number of human genome sequences compared to Bifrost and variation graphs produced by VGtoolkit.

    Availability

    The RLZ-Graph software is available at: https://github.com/Kingsford-Group/rlzgraph.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract Motivation

    Almost all de novo short-read genome and transcriptome assemblers start by building a representation of the de Bruijn Graph of the reads they are given as input. Even when other approaches are used for subsequent assembly (e.g. when one is using ‘long read’ technologies like those offered by PacBio or Oxford Nanopore), efficient k-mer processing is still crucial for accurate assembly, and state-of-the-art long-read error-correction methods use de Bruijn Graphs. Because of the centrality of de Bruijn Graphs, researchers have proposed numerous methods for representing de Bruijn Graphs compactly. Some of these proposals sacrifice accuracy to save space. Further, none of these methods store abundance information, i.e. the number of times that each k-mer occurs, which is key in transcriptome assemblers.

    Results

    We present a method for compactly representing the weighted de Bruijn Graph (i.e. with abundance information) with essentially no errors. Our representation yields zero errors while increasing the space requirements by less than 18–28% compared to the approximate de Bruijn graph representation in Squeakr. Our technique is based on a simple invariant that all weighted de Bruijn Graphs must satisfy, and hence is likely to be of general interest and applicable in most weighted de Bruijn Graph-based systems.

    Availability and implementation

    https://github.com/splatlab/debgr.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Alkan, Can (Ed.)
    Abstract Motivation

    Detection of structural variants (SVs) from the alignment of sample DNA reads to the reference genome is an important problem in understanding human diseases. Long reads that can span repeat regions, along with an accurate alignment of these long reads play an important role in identifying novel SVs. Long-read sequencers, such as nanopore sequencing, can address this problem by providing very long reads but with high error rates, making accurate alignment challenging. Many errors induced by nanopore sequencing have a bias because of the physics of the sequencing process and proper utilization of these error characteristics can play an important role in designing a robust aligner for SV detection problems. In this article, we design and evaluate HQAlign, an aligner for SV detection using nanopore sequenced reads. The key ideas of HQAlign include (i) using base-called nanopore reads along with the nanopore physics to improve alignments for SVs, (ii) incorporating SV-specific changes to the alignment pipeline, and (iii) adapting these into existing state-of-the-art long-read aligner pipeline, minimap2 (v2.24), for efficient alignments.

    Results

    We show that HQAlign captures about 4%–6% complementary SVs across different datasets, which are missed by minimap2 alignments while having a standalone performance at par with minimap2 for real nanopore reads data. For the common SV calls between HQAlign and minimap2, HQAlign improves the start and the end breakpoint accuracy by about 10%–50% for SVs across different datasets. Moreover, HQAlign improves the alignment rate to 89.35% from minimap2 85.64% for nanopore reads alignment to recent telomere-to-telomere CHM13 assembly, and it improves to 86.65% from 83.48% for nanopore reads alignment to GRCh37 human genome.

    Availability and implementation

    https://github.com/joshidhaivat/HQAlign.git.

     
    more » « less
  5. Abstract Background

    Adding sequences into an existing (possibly user-provided) alignment has multiple applications, including updating a large alignment with new data, adding sequences into a constraint alignment constructed using biological knowledge, or computing alignments in the presence of sequence length heterogeneity. Although this is a natural problem, only a few tools have been developed to use this information with high fidelity.

    Results

    We present EMMA (Extending Multiple alignments using MAFFT--add) for the problem of adding a set of unaligned sequences into a multiple sequence alignment (i.e., a constraint alignment). EMMA builds on MAFFT--add, which is also designed to add sequences into a given constraint alignment. EMMA improves on MAFFT--add methods by using a divide-and-conquer framework to scale its most accurate version, MAFFT-linsi--add, to constraint alignments with many sequences. We show that EMMA has an accuracy advantage over other techniques for adding sequences into alignments under many realistic conditions and can scale to large datasets with high accuracy (hundreds of thousands of sequences). EMMA is available athttps://github.com/c5shen/EMMA.

    Conclusions

    EMMA is a new tool that provides high accuracy and scalability for adding sequences into an existing alignment.

     
    more » « less