skip to main content


Title: Leaf trait plasticity reveals interactive effects of temporally disjunct grazing and warming on plant communities
Abstract

Changes in climate and grazing intensity influence plant-community compositions and their functional structure. Yet, little is known about their possible interactive effects when climate change mainly has consequences during the growing season and grazing occurs off growing season (dormant season grazing). We examined the contribution of trait plasticity to the immediate responses in the functional structure of plant community due to the interplay between these two temporally disjunct drivers. We conducted a field experiment in the northern Mongolian steppe, where climate was manipulated by open-top chambers (OTCs) for two growing seasons, increasing temperature and decreasing soil moisture (i.e., increased aridity), and grazing was excluded for one dormant season between these two growing seasons. We calculated the community-weighted mean (CWM) and the functional diversity (FD) of six leaf traits. Based on a variance partitioning approach, we evaluated how much of the responses in CWM and FD to OTCs and dormant season grazing occur through plasticity. The interactive effect of OTCs and the dormant season grazing were detected only after considering the role of trait plasticity. Overall, OTCs influenced the responses in CWM more than in FD, but the effects of OTCs were much less pronounced where dormant season grazing occurred. Thus, warming (together with decreased soil moisture) and the elimination of dormant season grazing could interact to impact the functional trait structure of plant communities through trait plasticity. Climate change effects should be considered in the context of altered land use, even if temporally disjunct.

 
more » « less
NSF-PAR ID:
10498983
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Oecologia
Volume:
204
Issue:
4
ISSN:
0029-8549
Format(s):
Medium: X Size: p. 833-843
Size(s):
p. 833-843
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Plant traits are useful proxies of plant strategies and can influence community and ecosystem responses to climate extremes, such as severe drought. Few studies, however, have investigated both the immediate and lagged effects of drought on community‐weighted mean (CWM) plant traits, with even less research on the relative roles of interspecific vs. intraspecific trait variability in such responses.

    We experimentally reduced growing season precipitation by 66% in two cold‐semi‐arid grassland sites in northern China for four consecutive years to explore the drought resistance of CWM traits as well as their recovery 2 years following the drought. In addition, we isolated the effects of both interspecific and intraspecific trait variability on shifts in CWM traits.

    At both sites, we observed significant effects of drought on interspecific and intraspecific trait variability which, in some cases, led to significant changes in CWM traits. For example, drought led to reduced CWM plant height and leaf phosphorous content, but increased leaf carbon content at both sites, with responses primarily due to intraspecific trait shifts. Surprisingly, these CWM traits recovered completely 2 years after the extreme drought. Intraspecific trait variability influenced CWM traits via both positive and negative covariation with interspecific trait variability during drought and recovery phases.

    These findings highlight the important role of interspecific and intraspecific trait variability in driving the response and recovery of CWM traits following extreme, prolonged drought.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  2. Abstract

    As organisms shift their geographic distributions in response to climate change, biotic interactions have emerged as an important factor driving the rate and success of range expansions. Plant–microbe interactions are an understudied but potentially important factor governing plant range shifts. We studied the distribution and function of microbes present in high‐elevation unvegetated soils, areas that plants are colonizing as climate warms, snow melts earlier, and the summer growing season lengthens. Using a manipulative snowpack and microbial inoculation transplant experiment, we tested the hypothesis that growing‐season length and microbial community composition interact to control plant elevational range shifts. We predicted that a lengthening growing season combined with dispersal to patches of soils with more mutualistic microbes and fewer pathogenic microbes would facilitate plant survival and growth in previously unvegetated areas. We identified negative effects on survival of the common alpine bunchgrassDeschampsia cespitosain both short and long growing seasons, suggesting an optimal growing‐season length for plant survival in this system that balances time for growth with soil moisture levels. Importantly, growing‐season length and microbes interacted to affect plant survival and growth, such that microbial community composition increased in importance in suboptimal growing‐season lengths. Further, plants grown with microbes from unvegetated soils grew as well or better than plants grown with microbes from vegetated soils. These results suggest that the rate and spatial extent of plant colonization of unvegetated soils in mountainous areas experiencing climate change could depend on both growing‐season length and soil microbial community composition, with microbes potentially playing more important roles as growing seasons lengthen.

     
    more » « less
  3. Abstract Aim

    Theoretical, experimental and observational studies have shown that biodiversity–ecosystem functioning (BEF) relationships are influenced by functional community structure through two mutually non‐exclusive mechanisms: (1) the dominance effect (which relates to the traits of the dominant species); and (2) the niche partitioning effect [which relates to functional diversity (FD)]. Although both mechanisms have been studied in plant communities and experiments at small spatial extents, it remains unclear whether evidence from small‐extent case studies translates into a generalizable macroecological pattern. Here, we evaluate dominance and niche partitioning effects simultaneously in grassland systems world‐wide.

    Location

    Two thousand nine hundred and forty‐one grassland plots globally.

    Time period

    2000–2014.

    Major taxa studied

    Vascular plants.

    Methods

    We obtained plot‐based data on functional community structure from the global vegetation plot database “sPlot”, which combines species composition with plant trait data from the “TRY” database. We used data on the community‐weighted mean (CWM) and FD for 18 ecologically relevant plant traits. As an indicator of primary productivity, we extracted the satellite‐derived normalized difference vegetation index (NDVI) from MODIS. Using generalized additive models and deviation partitioning, we estimated the contributions of trait CWM and FD to the variation in annual maximum NDVI, while controlling for climatic variables and spatial structure.

    Results

    Grassland communities dominated by relatively tall species with acquisitive traits had higher NDVI values, suggesting the prevalence of dominance effects for BEF relationships. We found no support for niche partitioning for the functional traits analysed, because NDVI remained unaffected by FD. Most of the predictive power of traits was shared by climatic predictors and spatial coordinates. This highlights the importance of community assembly processes for BEF relationships in natural communities.

    Main conclusions

    Our analysis provides empirical evidence that plant functional community structure and global patterns in primary productivity are linked through the resource economics and size traits of the dominant species. This is an important test of the hypotheses underlying BEF relationships at the global scale.

     
    more » « less
  4. Abstract

    Ecological restoration outcomes are highly variable, undermining efforts to recover biodiversity and ecosystem functions. One poorly understood source of variability is ‘year effects’—interannual variation in environmental conditions during the first year of restoration that alter successional trajectories of plant communities.

    There have been few experimental tests disentangling planting years from other differences among restoration projects (e.g. edaphic conditions, restoration approach), particularly those resolving mechanisms for year effects such as planting‐year rainfall. Moreover, past year effect studies focused almost exclusively on species‐level consequences. Therefore, the extent to which year effects influence the traits of communities is unknown.

    To address these gaps and provide a mechanistic test of how precipitation contributes to year effects, we conducted an experiment where we manipulated rainfall (drought, average and high levels) during the first growing season, replicated across three establishment year treatments to disentangle the effects of precipitation from other drivers of year effects. In each establishment year, we seeded the same species mix to initiate grassland restoration. We then surveyed plant community compositions annually for 5 years to quantify trait responses of restored communities to planting year rainfall.

    We found that variation in planting‐year precipitation altered community assembly trajectories by influencing community‐weighted mean (CWM) trait composition, and these effects persisted for at least 5 years. Over time, CWM specific leaf area and CWM seed mass decreased and CWM plant height increased. The effect of age on CWM plant height was stronger in plots that received mean and high watering treatments compared to drought treatments. This effect was also observed for CWM seed mass, albeit weaker.

    We also found some evidence for planting year effects unrelated to planting‐year rainfall for the three CWM traits, illustrating how interannually varying environmental conditions besides rainfall can generate persistent year effect on plant communities through their traits.

    Synthesis and applications. Our results provide evidence for planting year rainfall interacting with community assembly to alter the functional trait composition of restored grasslands. This suggests that interannual variation in rainfall during establishment is an important source of divergent biodiversity and functional outcomes in restored grasslands.

     
    more » « less
  5. Abstract

    Climate warming is expected to stimulate plant growth in high‐elevation and high‐latitude ecosystems, significantly increasing aboveground net primary production (ANPP). However, the effects of simultaneous changes in temperature, snowmelt timing, and summer water availability on total net primary production (NPP)—and elucidation of both above‐ and belowground responses—remain an important area in need of further study. In particular, measures of belowground net primary productivity (BNPP) are required to understand whether ANPP changes reflect changes in allocation or are indicative of a whole plant NPP response. Further, plant functional traits provide a key way to scale from the individual plant to the community level and provide insight into drivers of NPP responses to environmental change. We used infrared heaters to warm an alpine plant community at Niwot Ridge, Colorado, and applied supplemental water to compensate for soil water loss induced by warming. We measured ANPP, BNPP, and leaf and root functional traits across treatments after 5 yr of continuous warming. Community‐level ANPP and total NPP (ANPP + BNPP) did not respond to heating or watering, but BNPP increased in response to heating. Heating decreased community‐level leaf dry matter content and increased total root length, indicating a shift in strategy from resource conservation to acquisition in response to warming. Water use efficiency (WUE) decreased with heating, suggesting alleviation of moisture constraints that may have enabled the plant community to increase productivity. Heating may have decreased WUE by melting snow earlier and creating more days early in the growing season with adequate soil moisture, but stimulated dry mass investment in roots as soils dried down later in the growing season. Overall, this study highlights how ANPP and BNPP responses to climate change can diverge, and encourages a closer examination of belowground processes, especially in alpine systems, where the majority of NPP occurs belowground.

     
    more » « less