skip to main content


Title: Evaluating the polymerization effectiveness and biocompatibility of bio‐sourced, visible light‐based photoinitiator systems
Abstract

The use of photopolymerization is expanding across a multitude of biomedical applications, from drug delivery to bioprinting. Many of these current and emerging photopolymerization systems employ visible light, as motivated by safety and energy efficiency considerations. However, the “library” of visible light initiators is limited compared with the wealth of options available for UV polymerization. Furthermore, the synthesis of traditional photoinitiators relies on diminishing raw materials, and several traditional photoinitiators are considered emerging environmental contaminants. As such, there has been recent focus on identifying and characterizing biologically sourced, visible light‐based photoinitiator systems that can be effectively used in photopolymerization applications. In this regard, several bio‐sourced molecules have been shown to act as photoinitiators, primarily through Type II photoinitiation mechanisms. However, whether bio‐sourced molecules can also act as effective synergists in these reactions remains unknown. In this study, we evaluated the effectiveness of bio‐sourced synergist candidates, with a focus on amino acids, due to their amine functional groups, in combination with two bio‐sourced photoinitiator molecules: riboflavin and curcumin. We tested the effectiveness of these photoinitiator systems under both violet (405 nm) and blue (460–475 nm) light using photo‐rheology. We found that several synergist candidates, namely lysine, arginine, and histidine, increased the polymerization effectiveness of riboflavin when used with both violet and blue light. With curcumin, we found that almost all tested synergist candidates slightly decreased the polymerization effectiveness compared with curcumin alone under both light sources. These results show that bio‐sourced molecules have the potential to be used as synergists with bio‐sourced photoinitiators in visible light photopolymerization. However, more work must be done to fully characterize these reactions and to investigate more synergist candidates. Ultimately, this information is expected to expand the range of available visible light‐based photoinitiator systems and increase their sustainability.

 
more » « less
NSF-PAR ID:
10499010
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Biomedical Materials Research Part A
ISSN:
1549-3296
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two-photon lithography (TPL) is a photopolymerization-based additive manufacturing technique capable of fabricating complex 3D structures with submicron features. Projection TPL (P-TPL) is a specific implementation that leverages projection-based parallelization to increase the rate of printing by three orders of magnitude. However, a practical limitation of P-TPL is the high shrinkage of the printed microstructures that is caused by the relatively low degree of polymerization in the as-printed parts. Unlike traditional stereolithography (SLA) methods and conventional TPL, most of the polymerization in P-TPL occurs through dark reactions while the light source is off, thereby resulting in a lower degree of polymerization. In this study, we empirically investigated the parameters of the P-TPL process that affect shrinkage. We observed that the shrinkage reduces with an increase in the duration of laser exposure and with a reduction of layer spacing. To broaden the design space, we explored a photochemical post-processing technique that involves further curing the printed structures using UV light while submerging them in a solution of a photoinitiator. With this post-processing, we were able to reduce the areal shrinkage from more than 45% to 1% without limiting the geometric design space. This shows that P-TPL can achieve high dimensional accuracy while taking advantage of the high throughput when compared to conventional serial TPL. Furthermore, P-TPL has a higher resolution when compared to the conventional SLA prints at a similar shrinkage rate.

     
    more » « less
  2. Abstract We have studied effects of metal–dielectric substrates on photopolymerization of [2,2ʹ-Bi-1H-indene]-1,1ʹ-dione-3,3ʹ-diyl diheptanoate (BITh) monomer. We synthetized BITh and spin-coated it onto a variety of dielectric, metallic, and metal–dielectric substrates. The films were exposed to radiation of a UV–Visible Xe lamp, causing photo-polymerization of monomer molecules. The magnitude and the rate of the photo-polymerization were monitored by measuring the strength of the ~ 480 nm absorption band, which existed in the monomer but not in the polymer. Expectedly, the rate of photo-polymerization changed nearly linearly with the change of the pumping intensity. In contrast with our early study of photo-degradation of semiconducting polymer P3HT, the rate of photo-polymerization of BITh is getting modestly higher if the monomer film is deposited on top of silver separated from the monomer by a thin insulating MgF 2 layer preventing a charge transfer. This effect is partly due to a constructive interference of the incident and reflected light waves, as well as known in the literature effects of metal/dielectric substrates on a variety of spectroscopic and energy transfer parameters. At the same time, the rate of photopolymerization is getting threefold larger if monomer is deposited on Ag film directly and charge transfer is allowed. Finally, Au substrates cause modest (~ 50%) enhancement of both monomer film absorption and the rate of photo-polymerization. 
    more » « less
  3. Abstract

    The systems for multiphoton 3D nanoprinting are rapidly increasing in print speed for larger throughput and scale, unfortunately without also improvement in resolution. Separately, the process of photoinhibition lithography has been demonstrated to enhance the resolution of multiphoton printing through the introduction of a secondary laser source. The photo-chemical dynamics and interactions for achieving photoinhibition in the various multiphoton photoinitiator systems are complex and still not well understood. Here, we examine the photoinhibition process of the common photoinitiator 7-diethylamino 3-thenoylcoumarin (DETC) with inhibition lasers near or at the multiphoton printing laser wavelength in typical low peak intensity, high repetition rate 3D nanoprinting processes. We demonstrate the clear inhibition of the polymerization process consistent with a triplet absorption deactivation mechanism for a DETC photoresist as well as show inhibition for several other photoresist systems. Additionally, we explore options to recover the photoinhibition process when printing with high intensity, low repetition rate lasers. Finally, we demonstrate photoinhibition in a projection multiphoton printing system. This investigation of photoinhibition lithography with common photoinitiators elucidates the possibility for photoinhibition occurring in many resist systems with typical high repetition rate multiphoton printing lasers as well as for high-speed projection multiphoton printing.

     
    more » « less
  4. ABSTRACT

    Printing of high‐resolution three‐dimensional nanostructures utilizing two‐photon polymerization has gained significant attention recently. In particular, isopropyl thioxanthone (ITX) has been implemented as a photoinitiator due to its capability of initiating and depleting polymerization on demand, but new photoinitiating materials are still needed in order to reduce the power requirements for the high‐throughput creation of 3D structures. To address this point, a suite of new thioxanthone‐based photoinitiators were synthesized and characterized. Then two‐photon polymerization was performed using the most promising photoinitiating molecule. Importantly, one of the initiators, 2,7‐bis[(4‐(dimethylamino)phenyl ethynyl)‐9H‐thioxanthen‐9‐one] (BDAPT), showed a fivefold improvement in the writing threshold over the commonly used ITX molecule. To elucidate the fundamental mechanism, the excitation and inhibition behavior of the BDAPT molecule were evaluated using density functional theory (DFT) calculations, low‐temperature phosphorescence spectroscopy, ultra‐fast transient absorption spectroscopy, and the two‐photon Z‐scan spectroscopic technique. The improved polymerization threshold of this new photoinitiator presents a clear pathway for the modification of photoinitiators in 3D nanoprinting. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 1462–1475

     
    more » « less
  5. The advancement of triplet–triplet annihilation based upconversion (TTA-UC) in emerging technologies necessitates the development of solid-state systems that are readily accessible and broadly applicable. Here, we demonstrate that thiol–ene click chemistry can be used as a facile cure-on-demand synthetic route to access elastomeric films capable of TTA-UC. Photopolymerization of multifunctional thiols in the presence of a thiol-functionalized 9,10-diphenylanthracene (DPA) emitter results in covalent DPA integration and homogenous crosslinked polymer networks. The palladium( ii ) octaethylporphyrin (PdOEP) sensitizer is subsequently introduced into the films through solution immersion. Upon excitation at 544 nm, green-to-blue upconversion is observed with compositional tuning resulting in an optimal upconverted emission intensity at 1.0 wt% DPA and 0.02 wt% PdOEP. The effectiveness of thiol–ene networks to function as robust host materials for solid-state TTA-UC is further demonstrated by improved photostability in air. 
    more » « less