skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Evaluating the polymerization effectiveness and biocompatibility of bio‐sourced, visible light‐based photoinitiator systems
Abstract The use of photopolymerization is expanding across a multitude of biomedical applications, from drug delivery to bioprinting. Many of these current and emerging photopolymerization systems employ visible light, as motivated by safety and energy efficiency considerations. However, the “library” of visible light initiators is limited compared with the wealth of options available for UV polymerization. Furthermore, the synthesis of traditional photoinitiators relies on diminishing raw materials, and several traditional photoinitiators are considered emerging environmental contaminants. As such, there has been recent focus on identifying and characterizing biologically sourced, visible light‐based photoinitiator systems that can be effectively used in photopolymerization applications. In this regard, several bio‐sourced molecules have been shown to act as photoinitiators, primarily through Type II photoinitiation mechanisms. However, whether bio‐sourced molecules can also act as effective synergists in these reactions remains unknown. In this study, we evaluated the effectiveness of bio‐sourced synergist candidates, with a focus on amino acids, due to their amine functional groups, in combination with two bio‐sourced photoinitiator molecules: riboflavin and curcumin. We tested the effectiveness of these photoinitiator systems under both violet (405 nm) and blue (460–475 nm) light using photo‐rheology. We found that several synergist candidates, namely lysine, arginine, and histidine, increased the polymerization effectiveness of riboflavin when used with both violet and blue light. With curcumin, we found that almost all tested synergist candidates slightly decreased the polymerization effectiveness compared with curcumin alone under both light sources. These results show that bio‐sourced molecules have the potential to be used as synergists with bio‐sourced photoinitiators in visible light photopolymerization. However, more work must be done to fully characterize these reactions and to investigate more synergist candidates. Ultimately, this information is expected to expand the range of available visible light‐based photoinitiator systems and increase their sustainability.  more » « less
Award ID(s):
2142246
PAR ID:
10499011
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Biomedical Materials Research Part A
Volume:
112
Issue:
10
ISSN:
1549-3296
Format(s):
Medium: X Size: p. 1662-1674
Size(s):
p. 1662-1674
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Carbon nanomaterials, specifically carbon dots and carbon nitrides, play a crucial role as heterogeneous photoinitiators in both radical and cationic polymerization processes. These recently introduced materials offer promising solutions to the limitations of current homogeneous systems, presenting a novel approach to photopolymerization. This review highlights the preparation and photocatalytic performance of these nanomaterials, emphasizing their application in various polymerization techniques, including photoinduced i) free radical, ii) RAFT, iii) ATRP, and iv) cationic photopolymerization. Additionally, it discusses their potential in addressing contemporary challenges and explores prospects in this field. Moreover, carbon nitrides, in particular, exhibit exceptional oxygen tolerance, underscoring their significance in radical polymerization processes and allowing their applications such as 3D printing, surface modification of coatings, and hydrogel engineering. 
    more » « less
  2. Abstract Photomediated Atom Transfer Radical Polymerization (photoATRP) is an activator regeneration method, which allows for the controlled synthesis of well‐defined polymers via light irradiation. Traditional photoATRP is often limited by the need for high‐energy ultraviolet or violet light. These could negatively affect the control and selectivity of the polymerization, promote side reactions, and may not be applicable to biologically relevant systems. This drawback can be circumvented by an introduction of the catalytic amount of photocatalysts, which absorb visible and/or NIR light and, therefore, controlled, regenerative ATRP can be performed with the dual‐catalytic cycle. Herein, a critical summary of recent developments in the field of dual‐catalysis concerning Cu‐catalyzed ATRP is provided. Contributions of involved species are examined mechanistically, followed by challenges and future directions towards the next generation of advanced functional macromolecular materials. 
    more » « less
  3. Two-photon polymerization (TPP) has emerged as a favored advanced manufacturing tool for creating complex 3D structures in the sub-micron regime. However, the widescale implementation of this technique is limited partly due to the cost of a high-power femtosecond laser. In this work, a method is proposed to reduce the femtosecond laser 3D printing power by as much as 50% using a combination of two-photon absorption from an 800 nm femtosecond laser and single photon absorption from a 532 nm nanosecond laser. The underlying photochemical process is explained with modeling of the photopolymerization reaction. The results show that incorporating single-photon absorption from a visible wavelength laser efficiently reduces inhibitor concentration, resulting in a decreased requirement for femtosecond laser power. The radical to macroradical conversion is dominated by the reduction in oxygen concentration, while the reduction in photoinitiator concentration limits the threshold power reduction of the femtosecond laser. 
    more » « less
  4. Ling_Xing, Yi; Peter, Müller_Buschbaum (Ed.)
    Photobase generators (PBGs) are compounds that utilize light-sensitive chemical-protecting groups to offer spatiotemporal control of releasing organic bases upon targeted light irradiation. PBGs can be implemented as an external control to initiate anionic polymerizations such as thiol–ene Michael addition reactions. However, there are limitations for common PBGs, including a short absorption wavelength and weak base release that lead to poor efficiency in photopolymerization. Therefore, there is a great need for visible-light-triggered PBGs that are capable of releasing strong bases efficiently. Here, we report two novel BODIPY-based visible-light-sensitive PBGs for light-induced activation of the thiol–ene Michael “click” reaction and polymerization. These PBGs were designed by connecting the BODIPY-based light-sensitive protecting group with tetramethylguanidine (TMG), a strong base. Moreover, we exploited the heavy atom effect to increase the efficiency of releasing TMG and the polymerization rate. These BODIPY-based PBGs exhibit extraordinary activity toward thiol–ene Michael addition-based polymerization, and they can be used in surface coating and polymer network formation of different thiol and vinyl monomers. 
    more » « less
  5. null (Ed.)
    The proliferation of energy-efficient light-emitting diode (LED) lighting has resulted in continued exposure to blue light, which has been linked to cataract formation, circadian disruption, and mood disorders. Blue light can be readily minimized in pursuit of “human-centric” lighting using a violet LED chip (λem ≈ 405 nm) downconverted by red, green, and blue-emitting phosphors. However, few phosphors efficiently convert violet light to blue light. This work reports a new phosphor that meets this demand. Na2MgPO4F:Eu2+ can be excited by a violet LED yielding an efficient, bright blue emission. The material also shows zero thermal quenching and has outstanding chromatic stability. The chemical robustness of the phosphor was also confirmed through prolonged exposure to water and high temperatures. A prototype device using a 405 nm LED, Na2MgPO4F:Eu2+, and a green and red-emitting phosphor produces a warm white light with a higher color rendering index than a commercially purchased LED light bulb while significantly reducing the blue component. These results demonstrate the capability of Na2MgPO4F:Eu2+ as a next-generation phosphor capable of advancing human-centric lighting. 
    more » « less