skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fishery observers address arctic fishery discards
Abstract Fishery observers are prevalent actors in the global effort to reduce discards in fisheries, but there remains considerable uncertainty about how effective they are. We analyzed high-resolution logbook records of individual hauls (n= 127 415) across five-and-a-half-years (2012–2018) for all of Greenland’s large-scale fisheries to determine if onboard fishery observers influence the mandatory reporting of discards. To do so, we used exact matching to compare reported discards for observed and unobserved hauls (each time a catch is recorded), thus controlling for systematic differences between monitored and unmonitored practices. After adjusting for variables that represent species caught, gear, vessel, owner, year, license, and location, we found that skippers systematically underreport discards when no observers are on board. Systematic underreporting was most pronounced in less valuable fisheries, in contrast to theoretical arguments in previous studies. The differences between reported discards from observed and unobserved fishing leads us to assume that onboard observers encourage more faithful logbook records. Thus, onboard observers play a vital role in improving information on the environmental impact of fishing and in turn, make a key contribution to sustainable fisheries management.  more » « less
Award ID(s):
1953910
PAR ID:
10499050
Author(s) / Creator(s):
;
Publisher / Repository:
Environmental Research Letters
Date Published:
Journal Name:
Environmental Research Letters
Volume:
15
Issue:
9
ISSN:
1748-9326
Page Range / eLocation ID:
0940c4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The management and conservation of tuna and other transboundary marine species have to date been limited by an incomplete understanding of the oceanographic, ecological and socioeconomic factors mediating fishery overlap and interactions, and how these factors vary across expansive, open ocean habitats. Despite advances in fisheries monitoring and biologging technology, few attempts have been made to conduct integrated ecological analyses at basin scales relevant to pelagic fisheries and the highly migratory species they target. Here, we use vessel tracking data, archival tags, observer records, and machine learning to examine inter‐ and intra‐annual variability in fisheries overlap (2013–2020) of five pelagic longline fishing fleets with North Pacific albacore tuna (Thunnus alalunga, Scombridae). Although progressive declines in catch and biomass have been observed over the past several decades, the North Pacific albacore is one of the only Pacific tuna stocks primarily targeted by pelagic longlines not currently listed as overfished or experiencing overfishing. We find that fishery overlap varies significantly across time and space as mediated by (1) differences in habitat preferences between juvenile and adult albacore; (2) variation of oceanographic features known to aggregate pelagic biomass; and (3) the different spatial niches targeted by shallow‐set and deep‐set longline fishing gear. These findings may have significant implications for stock assessment in this and other transboundary fishery systems, particularly the reliance on fishery‐dependent data to index abundance. Indeed, we argue that additional consideration of how overlap, catchability, and size selectivity parameters vary over time and space may be required to ensure the development of robust, equitable, and climate‐resilient harvest control rules. 
    more » « less
  2. Abstract A network of marine reserves can enhance yield in depleted fisheries by protecting populations, particularly large, old spawners that supply larvae for interspersed fishing grounds. The ability of marine reserves to enhance sustainable fisheries is much less evident. We report empirical evidence of a marine reserve network improving yield regionally for a sustainable spiny lobster fishery, apparently through the spillover of adult lobsters and behavioral adaptation by the fishing fleet. Results of a Before-After, Control-Impact analysis found catch, effort, and Catch-Per-Unit Effort increased after the establishment of marine reserves in the northern region of the fishery where fishers responded by fishing intensively at reserve borders, but declined in the southern region where they vacated once productive fishing grounds. The adaptation of the northern region of the fishery may have been aided by a history of collaboration between fishers, scientists, and managers, highlighting the value of collaborative research and education programs for preparing fisheries to operate productively within a seascape that includes a large marine reserve network. 
    more » « less
  3. Abstract Rising water temperatures along the northeastern U.S. continental shelf have resulted in an offshore range shift of the Atlantic surfclamSpisula solidissimato waters still occupied by ocean quahogsArctica islandica. Fishers presently are prohibited from landing both Atlantic surfclams and ocean quahogs in the same catch, thus limiting fishing to locations where the target species can be sorted on deck. Wind energy development on and around the fishing grounds will further restrict the fishery. A spatially explicit model of the Atlantic surfclam fishery (Spatially Explicit Fishery Economics Simulator) has the ability to simulate the consequences of fishery displacement due to wind energy development in combination with fishery and stock dynamics related to the species' overlap with ocean quahogs. Five sets of simulations were run to determine the effect of varying degrees of species overlap due to Atlantic surfclam range shifts in conjunction with fishing constraints due to wind farm development. Simulations tracked changes in relative stock status, fishery performance, and the economic consequences for the fishery. Compared to a business‐as‐usual scenario, all scenarios with less‐restrictive fishing penalties due to species overlap exhibited higher raw catch numbers but also greater reductions in revenue and increases in cost after the implementation of wind farms. This analysis serves to demonstrate the response of the Atlantic surfclam fishery to combined pressures from competing ocean uses and climate change and emphasizes the potential for economic disruption of fisheries as climate change interacts with the evolution of ocean management on the continental shelf. 
    more » « less
  4. Abstract Fisheries are often characterized by high heterogeneity in the spatial distribution of habitat quality, as well as fishing effort. However, in several fisheries, the objective of achieving a sustainable yield is addressed by limiting Total Allowable Catch (TAC), set as a fraction of the overall population, regardless of the population's spatial distribution and of fishing effort. Here, we use an integral projection model to investigate how stock abundance and catch in the green abalone fishery in Isla Natividad, Mexico, are affected by the interaction of heterogeneity in habitat quality and fishing effort, and whether these interactions change with Allee effects—reproductive failure in a low-density population. We found that high-quality areas are under-exploited when fishing pressure is homogeneous but habitat is heterogeneous. However, this leads to different fishery outcomes depending on the stock's exploitation status, namely: sub-optimal exploitation when the TAC is set to maximum sustainable yield, and stability against collapses when the fishery is overexploited. Concentration of fishing effort in productive areas can compensate for this effect, which, similarly, has opposite consequences in both scenarios: fishery performance increases if the TAC is sustainable but decreases in overexploited fisheries. These results only hold when Allee effects are included. 
    more » « less
  5. Abstract Although different fisheries can be tightly linked to each other by human and ecosystem processes, they are often managed independently. Synchronous fluctuations among fish populations or fishery catches can destabilize ecosystems and economies, respectively, but the degree of synchrony around the world remains unclear. We analyzed 1,092 marine fisheries catch time series over 60 yr to test for the presence of coherence, a form of synchrony that allows for phase‐lagged relationships. We found that nearly every fishery was coherent with at least one other fishery catch time series globally and that coherence was strongest in the northeast Atlantic, western central Pacific, and eastern Indian Ocean. Analysis of fish biomass and fishing mortality time series from these hotspots revealed that coherence in biomass or fishing mortality were both possible, though biomass coherence was more common. Most of these relationships were synchronous with no time lags, and across catches in all regions, synchrony was a better predictor of regional catch portfolio effects than catch diversity. Regions with higher synchrony had lower stability in aggregate fishery catches, which can have negative consequences for food security and economic wealth. 
    more » « less