skip to main content

This content will become publicly available on December 26, 2024

Title: Divergent bleaching and recovery trajectories in reef-building corals following a decade of successive marine heatwaves

Increasingly frequent marine heatwaves are devastating coral reefs. Corals that survive these extreme events must rapidly recover if they are to withstand subsequent events, and long-term survival in the face of rising ocean temperatures may hinge on recovery capacity and acclimatory gains in heat tolerance over an individual’s lifespan. To better understand coral recovery trajectories in the face of successive marine heatwaves, we monitored the responses of bleaching-susceptible and bleaching-resistant individuals of two dominant coral species in Hawai’i,Montipora capitataandPorites compressa, over a decade that included three marine heatwaves. Bleaching-susceptible colonies ofP. compressaexhibited beneficial acclimatization to heat stress (i.e., less bleaching) following repeat heatwaves, becoming indistinguishable from bleaching-resistant conspecifics during the third heatwave. In contrast, bleaching-susceptibleM. capitatarepeatedly bleached during all successive heatwaves and exhibited seasonal bleaching and substantial mortality for up to 3 y following the third heatwave. Encouragingly, bleaching-resistant individuals of both species remained pigmented across the entire time series; however, pigmentation did not necessarily indicate physiological resilience. Specifically,M. capitatadisplayed incremental yet only partial recovery of symbiont density and tissue biomass across both bleaching phenotypes up to 35 mo following the third heatwave as well as considerable partial mortality. Conversely,P. compressaappeared to recover across most physiological metrics within 2 y and experienced little to no mortality. Ultimately, these results indicate that even some visually robust, bleaching-resistant corals can carry the cost of recurring heatwaves over multiple years, leading to divergent recovery trajectories that may erode coral reef resilience in the Anthropocene.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    For many long‐lived taxa, such as trees and corals, older, and larger individuals often have the lowest mortality and highest fecundity. However, climate change‐driven disturbances such as droughts and heatwaves may fundamentally alter typical size‐dependent patterns of mortality and reproduction in these important foundation taxa. Working in Moorea, French Polynesia, we investigated how a marine heatwave in 2019, one of the most intense marine heatwaves at our sites over the past 30 years, drove patterns of coral bleaching and mortality. The marine heatwave drove island‐wide mass coral bleaching that killed up to 76% and 65% of the largest individuals of the two dominant coral genera,PocilloporaandAcropora, respectively. Colonies ofPocilloporaandAcropora≥30 cm diameter were ~3.5× and ~1.3×, respectively, more likely to die than colonies <30‐cm diameter. Typically, annual mortality in these corals is concentrated on the smallest size classes. Yet, this heatwave dramatically reshaped this pattern, with heat stress disproportionately killing larger coral colonies and equalizing annual mortality rates across the size spectrum. This shift in the size‐mortality relationship reduced the overall fecundity of these genera by >60% because big corals are disproportionately important for reproduction on reefs. Additionally, the survivorship of microscopic coral recruits, critical for the recovery of corals following disturbances, declined to 2%, over an order of magnitude lower compared to a year without elevated thermal stress, where 33% of coral recruits survived. While other research has shown that larger corals can bleach more frequently than smaller corals, we show the severe impact this phenomenon can have at the reef‐wide scale. As marine heatwaves become more frequent and intense, disproportionate mortality of the largest, most fecund corals and near‐complete loss of entire cohorts of newly‐settled coral recruits will likely reduce the recovery capacity of these iconic ecosystems.

    more » « less
  2. Abstract

    Ocean warming is causing global coral bleaching events to increase in frequency, resulting in widespread coral mortality and disrupting the function of coral reef ecosystems. However, even during mass bleaching events, many corals resist bleaching despite exposure to abnormally high temperatures. While the physiological effects of bleaching have been well documented, the consequences of heat stress for bleaching‐resistant individuals are not well understood. In addition, much remains to be learned about how heat stress affects cellular‐level processes that may be overlooked at the organismal level, yet are crucial for coral performance in the short term and ecological success over the long term. Here we compared the physiological and cellular responses of bleaching‐resistant and bleaching‐susceptible corals throughout the 2019 marine heatwave in Hawai'i, a repeat bleaching event that occurred 4 years after the previous regional event. Relative bleaching susceptibility within species was consistent between the two bleaching events, yet corals of both resistant and susceptible phenotypes exhibited pronounced metabolic depression during the heatwave. At the cellular level, bleaching‐susceptible corals had lower intracellular pH than bleaching‐resistant corals at the peak of bleaching for both symbiont‐hosting and symbiont‐free cells, indicating greater disruption of acid–base homeostasis in bleaching‐susceptible individuals. Notably, cells from both phenotypes were unable to compensate for experimentally induced cellular acidosis, indicating that acid–base regulation was significantly impaired at the cellular level even in bleaching‐resistant corals and in cells containing symbionts. Thermal disturbances may thus have substantial ecological consequences, as even small reallocations in energy budgets to maintain homeostasis during stress can negatively affect fitness. These results suggest concern is warranted for corals coping with ocean acidification alongside ocean warming, as the feedback between temperature stress and acid–base regulation may further exacerbate the physiological effects of climate change.

    more » « less
  3. Abstract

    Microbiomes are essential features of holobionts, providing their hosts with key metabolic and functional traits like resistance to environmental disturbances and diseases. In scleractinian corals, questions remain about the microbiome's role in resistance and resilience to factors contributing to the ongoing global coral decline and whether microbes serve as a form of holobiont ecological memory. To test if and how coral microbiomes affect host health outcomes during repeated disturbances, we conducted a large‐scale (32 exclosures, 200 colonies, and 3 coral species sampled) and long‐term (28 months, 2018–2020) manipulative experiment on the forereef of Mo'orea, French Polynesia. In 2019 and 2020, this reef experienced the two most severe marine heatwaves on record for the site. Our experiment and these events afforded us the opportunity to test microbiome dynamics and roles in the context of coral bleaching and mortality resulting from these successive and severe heatwaves. We report unique microbiome responses to repeated heatwaves inAcropora retusa,Porites lobata, andPocilloporaspp., which included: microbiome acclimatization inA. retusa, and both microbiome resilience to the first marine heatwave and microbiome resistance to the second marine heatwave inPocilloporaspp. Moreover, observed microbiome dynamics significantly correlated with coral species‐specific phenotypes. For example, bleaching and mortality inA. retusaboth significantly increased with greater microbiome beta dispersion and greater Shannon Diversity, whileP. lobatacolonies had different microbiomes across mortality prevalence. Compositional microbiome changes, such as changes to proportions of differentially abundant putatively beneficial to putatively detrimental taxa to coral health outcomes during repeated heat stress, also correlated with host mortality, with higher proportions of detrimental taxa yielding higher mortality inA. retusa. This study reveals evidence for coral species‐specific microbial responses to repeated heatwaves and, importantly, suggests that host‐dependent microbiome dynamics may provide a form of holobiont ecological memory to repeated heat stress.

    more » « less
  4. Coral bleaching and mortality can show significant spatial and taxonomic heterogeneity at local scales, highlighting the need to understand the fine-scale drivers and impacts of thermal stress. In this study, we used structure-from-motion photogrammetry to track coral bleaching, mortality, and changes in community composition during the 2019 marine heatwave in Kāneʻohe Bay, Hawaiʻi. We surveyed 30 shallow reef patches every 3 weeks for the duration of the bleaching event (August-December) and one year after, resulting in a total of 210 large-area, high-resolution photomosaics that enabled us to follow the fate of thousands of coral colonies through time. We also measured environmental variables such as temperature, sedimentation, depth, and wave velocity at each of these sites, and extracted estimates of habitat complexity (rugosity R and fractal dimension D) from digital elevation models to better understand their effects on patterns of bleaching and mortality. We found that up to 80% of corals experienced moderate to severe bleaching in this period, with peak bleaching occurring in October when heat stress (Degree Heating Weeks) reached its maximum. Mortality continued to accumulate as bleaching levels dropped, driving large declines in more heat-susceptible species (77% loss of Pocillopora cover) and moderate declines in heat-tolerant species (19% and 23% for Porites compressa and Montipora capitata , respectively). Declines in live coral were accompanied by a rapid increase in algal cover across the survey sites. Spatial differences in bleaching were significantly linked to habitat complexity and coral species composition, with reefs that were dominated by Pocillopora experiencing the most severe bleaching. Mortality was also influenced by species composition, fractal dimension, and site-level differences in thermal stress. Our results show that spatial heterogeneity in the impacts of bleaching are driven by a mix of environmental variation, habitat complexity, and differences in assemblage composition. 
    more » « less
  5. Abstract

    Global climate change is altering coral reef ecosystems. Notably, marine heatwaves are producing widespread coral bleaching events that are increasing in frequency, with projections for annual bleaching events on reefs worldwide by mid‐century.

    Responses of corals to elevated seawater temperatures are modulated by abiotic factors (e.g. environmental regimes) and dominant Symbiodiniaceae endosymbionts that can shift coral traits and contribute to physiological legacy effects on future response trajectories. It is critical, therefore, to characterize shifting physiological and cellular states driven by these factors and evaluate their influence on in situ bleaching (and recovery) events. We use back‐to‐back bleaching events (2014, 2015) in Hawai'i to characterize the cellular and organismal phenotypes ofMontipora capitatacorals dominated by heat‐sensitiveCladocopiumor heat‐tolerantDurusdiniumSymbiodiniaceae at two reef sites.

    Despite fewer degree heating weeks in the first‐bleaching event relative to the second (7 vs. 10),M. capitatableaching severity was greater [bleached cover: ~70% (2014) vs. 50% (2015)] and environmental history (site effects) on coral phenotypes were more pronounced. Symbiodiniaceae affected bleaching responses, but immunity and antioxidant activity was similar in all corals, despite differences in bleaching phenotypes.

    We demonstrate that repeat bleaching triggers cellular responses that shift holobiont multivariate phenotypes. These perturbed multivariate phenotypes constitute physiological legacies, which set corals on trajectories (positive and/or negative) that influence future coral performance. Collectively, our data support the need for greater tracking of stress response in a multivariate context to better understand the biology and ecology of corals in the Anthropocene.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

    more » « less