skip to main content


This content will become publicly available on April 5, 2025

Title: Data report: X-ray fluorescence scanning of sediment cores, IODP Expedition 390/393 Site U1583, South Atlantic Transect
The western South Atlantic Ocean has not been drilled since the end of the Deep Sea Drilling Program, leading to a dearth of sedimentary sequences available from this sector of the Atlantic Ocean. In 2020–2022, a transect of new sites was drilled during International Ocean Discovery Program Expeditions 390C, 395E, 390, and 393 at 31°S and spanning from 28.8°W to 15.2°W. Here, we use X-ray fluorescence data, combined with shipboard magnetic susceptibility and natural gamma radiation, to characterize the sediments below the oligotrophic South Atlantic Gyre at Site U1583. These geochemical data add to the otherwise understudied southwest Atlantic Ocean.  more » « less
Award ID(s):
1326927
NSF-PAR ID:
10499233
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Publisher / Repository:
International Ocean Discovery Program
Date Published:
Journal Name:
Proceedings of the International Ocean Discovery Program Expedition reports
Volume:
390/393
Issue:
202
ISSN:
2377-3189
Subject(s) / Keyword(s):
["International Ocean Discovery Program","JOIDES Resolution","Expedition 393","South Atlantic Transect","Site U1583","Oligocene","Miocene","Pliocene","Pleistocene","Neogene"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The South Atlantic Transect (SAT) is a multidisciplinary scientific ocean drilling experiment designed to investigate the evolution of the ocean crust and overlying sediments across the western flank of the Mid-Atlantic Ridge. This project comprises four International Ocean Discovery Program expeditions: fully staffed Expeditions 390 and 393 (April–August 2022) built on engineering preparations during Expeditions 390C and 395E (October–December 2020 and April–June 2021, respectively) that took place without science parties during the height of the Coronavirus Disease 2019 (COVID-19) pandemic. Through operations along a crustal flow line at ~31°S, the SAT recovered complete sedimentary sections and the upper ~40–340 m of the underlying ocean crust formed at a slow- to intermediate-spreading rate at the Mid-Atlantic Ridge over the past ~61 My. The sediments along this transect were originally spot cored more than 50 y ago during Deep Sea Drilling Project Leg 3 (December 1968–January 1969) to help verify the theories of seafloor spreading and plate tectonics. The SAT expeditions targeted six primary sites on 7, 15, 31, 49, and 61 Ma ocean crust that fill critical gaps in our sampling of intact in situ ocean crust with regard to crustal age, spreading rate, and sediment thickness. Drilling these sites was required to investigate the history, duration, and intensity of the low-temperature hydrothermal interactions between the aging ocean crust and the evolving South Atlantic Ocean. This knowledge will improve the quantification of past hydrothermal contributions to global biogeochemical cycles and help develop a predictive understanding of the impacts of variable hydrothermal processes and exchanges. Samples from the transect of the previously unexplored sediment- and basalt-hosted deep biosphere beneath the South Atlantic Gyre are essential to refine global biomass estimates and examine microbial ecosystems' responses to variable conditions in a low-energy gyre and aging ocean crust. The transect, located near World Ocean Circulation Experiment Line A10, provides records of carbonate chemistry and deepwater mass properties across the western South Atlantic through key Cenozoic intervals of elevated atmospheric CO2 and rapid climate change. Reconstruction of the history of the deep western boundary current and deepwater formation in the Atlantic basins will yield crucial data to test hypotheses regarding the role of evolving thermohaline circulation patterns in climate change and the effects of tectonic gateways and climate on ocean acidification. During engineering Expeditions 390C and 395E (5 October–5 December 2020 and 6 April–6 June 2021, respectively), a single hole was cored through the sediment cover and into the uppermost rocks of the ocean crust with the advanced piston corer and extended core barrel systems at five of the six primary proposed SAT sites. Reentry systems with casing were then installed either into basement or within 10 m of basement at each of those five sites. Expedition 390 (7 April–7 June 2022) conducted operations at three of the SAT sites, recovering 700 m of core (77% recovery) over 30.3 days of on-site operations. Sediment coring, basement coring, and wireline logging were conducted at two sites on ~61 Ma crust (Sites U1556 and U1557), and sediment coring was completed at the 7 Ma Site U1559. During Expedition 390, more than 1.2 km of sediments was characterized, including 793 m of core collected during Expeditions 390C and 395E at Sites U1556, U1557, and U1559 as well as Expedition 395E Site U1561, which was cored on thinly (<50 m) sedimented ~61 Ma crust. The uppermost ~342 and ~120 m of ~61 Ma ocean crust was cored at Sites U1556 and U1557, respectively. Geophysical wireline logging was achieved at both sites, but the basement hole at Site U1556 was not preserved as a legacy hole because of subsidence of the reentry cone below the seafloor. At Site U1557, the drill bit was deposited on the seafloor prior to downhole logging, leaving Hole U1557D available for future deepening and establishing a legacy borehole for basement hydrothermal and microbiological experiments. Expedition 393 (7 June–7 August 2022) operated at four sites, drilling in 12 holes to complete this initial phase of the SAT. Complete sedimentary sections were collected at Sites U1558, U1583, and U1560 on 49, 31, and 15 Ma crust, respectively, and together with 257.7 m of sediments cored during earlier operations, more than 600 m of sediments was characterized. The uppermost ocean crust was drilled at Sites U1558, U1560, and U1583 with good penetration (~130 to ~204 meters subbasement); however, at the youngest ~7 Ma Site U1559, only ~43 m of basement penetration was achieved in this initial attempt. Geophysical wireline logs were achieved at Sites U1583 and U1560 only. Expeditions 390 and 393 established legacy sites available for future deepening and downhole basement hydrothermal and microbiological experiments at Sites U1557, U1560, and U1559 on 61, 15, and 7 Ma crust, respectively. Highlights of the SAT expeditions include (1) recovering abundant altered glass, hydrothermal veins, complex breccias, and a wide range of alteration halos in the volcanic sequences of the uppermost ocean crust formed at 7–61 Ma, indicating low-temperature hydrothermal processes and exchanges between seawater and basalts across the western flank of the southern Mid-Atlantic Ridge for millions to tens of millions of years; (2) documenting extended redox gradients from both the seafloor and the sediment/basement interface that indicate significant subsurface fluid flow and may support a diversity of microorganisms and metabolisms; and (3) recovering an almost complete stratigraphic record of the Cenozoic (including the Paleocene/Eocene Thermal Maximum and other key climate events) composed of nannofossil oozes with varying amounts of clay indicating the shoaling and deepening of the calcite compensation depth. 
    more » « less
  2. The South Atlantic Transect (SAT) is a multidisciplinary scientific ocean drilling experiment designed to investigate the evolution of the ocean crust and overlying sediments across the western flank of the Mid-Atlantic Ridge. This project comprises four International Ocean Discovery Program expeditions: fully staffed Expeditions 390 and 393 (April–August 2022) built on engineering preparations during Expeditions 390C and 395E (October–December 2020 and April–June 2021, respectively) that took place without science parties during the height of the Coronavirus Disease 2019 (COVID-19) pandemic. Through operations along a crustal flow line at ~31°S, the SAT recovered complete sedimentary sections and the upper ~40–340 m of the underlying ocean crust formed at a slow- to intermediate-spreading rate at the Mid-Atlantic Ridge over the past ~61 My. The sediments along this transect were originally spot cored more than 50 y ago during Deep Sea Drilling Project Leg 3 (December 1968–January 1969) to help verify the theories of seafloor spreading and plate tectonics. The SAT expeditions targeted six primary sites on 7, 15, 31, 49, and 61 Ma ocean crust that fill critical gaps in our sampling of intact in situ ocean crust with regard to crustal age, spreading rate, and sediment thickness. Drilling these sites was required to investigate the history, duration, and intensity of the low-temperature hydrothermal interactions between the aging ocean crust and the evolving South Atlantic Ocean. This knowledge will improve the quantification of past hydrothermal contributions to global biogeochemical cycles and help develop a predictive understanding of the impacts of variable hydrothermal processes and exchanges. Samples from the transect of the previously unexplored sediment- and basalt-hosted deep biosphere beneath the South Atlantic Gyre are essential to refine global biomass estimates and examine microbial ecosystems' responses to variable conditions in a low-energy gyre and aging ocean crust. The transect, located near World Ocean Circulation Experiment Line A10, provides records of carbonate chemistry and deepwater mass properties across the western South Atlantic through key Cenozoic intervals of elevated atmospheric CO2 and rapid climate change. Reconstruction of the history of the deep western boundary current and deepwater formation in the Atlantic basins will yield crucial data to test hypotheses regarding the role of evolving thermohaline circulation patterns in climate change and the effects of tectonic gateways and climate on ocean acidification. During engineering Expeditions 390C and 395E (5 October–5 December 2020 and 6 April–6 June 2021, respectively), a single hole was cored through the sediment cover and into the uppermost rocks of the ocean crust with the advanced piston corer and extended core barrel systems at five of the six primary proposed SAT sites. Reentry systems with casing were then installed either into basement or within 10 m of basement at each of those five sites. Expedition 390 (7 April–7 June 2022) conducted operations at three of the SAT sites, recovering 700 m of core (77% recovery) over 30.3 days of on-site operations. Sediment coring, basement coring, and wireline logging were conducted at two sites on ~61 Ma crust (Sites U1556 and U1557), and sediment coring was completed at the 7 Ma Site U1559. During Expedition 390, more than 1.2 km of sediments was characterized, including 793 m of core collected during Expeditions 390C and 395E at Sites U1556, U1557, and U1559 as well as Expedition 395E Site U1561, which was cored on thinly (<50 m) sedimented ~61 Ma crust. The uppermost ~342 and ~120 m of ~61 Ma ocean crust was cored at Sites U1556 and U1557, respectively. Geophysical wireline logging was achieved at both sites, but the basement hole at Site U1556 was not preserved as a legacy hole because of subsidence of the reentry cone below the seafloor. At Site U1557, the drill bit was deposited on the seafloor prior to downhole logging, leaving Hole U1557D available for future deepening and establishing a legacy borehole for basement hydrothermal and microbiological experiments. Expedition 393 (7 June–7 August 2022) operated at four sites, drilling in 12 holes to complete this initial phase of the SAT. Complete sedimentary sections were collected at Sites U1558, U1583, and U1560 on 49, 31, and 15 Ma crust, respectively, and together with 257.7 m of sediments cored during earlier operations, more than 600 m of sediments was characterized. The uppermost ocean crust was drilled at Sites U1558, U1560, and U1583 with good penetration (~130 to ~204 meters subbasement); however, at the youngest ~7 Ma Site U1559, only ~43 m of basement penetration was achieved in this initial attempt. Geophysical wireline logs were achieved at Sites U1583 and U1560 only. Expeditions 390 and 393 established legacy sites available for future deepening and downhole basement hydrothermal and microbiological experiments at Sites U1557, U1560, and U1559 on 61, 15, and 7 Ma crust, respectively. Highlights of the SAT expeditions include (1) recovering abundant altered glass, hydrothermal veins, complex breccias, and a wide range of alteration halos in the volcanic sequences of the uppermost ocean crust formed at 7–61 Ma, indicating low-temperature hydrothermal processes and exchanges between seawater and basalts across the western flank of the southern Mid-Atlantic Ridge for millions to tens of millions of years; (2) documenting extended redox gradients from both the seafloor and the sediment/basement interface that indicate significant subsurface fluid flow and may support a diversity of microorganisms and metabolisms; and (3) recovering an almost complete stratigraphic record of the Cenozoic (including the Paleocene/Eocene Thermal Maximum and other key climate events) composed of nannofossil oozes with varying amounts of clay indicating the shoaling and deepening of the calcite compensation depth. 
    more » « less
  3. The South Atlantic Transect (SAT) is a multidisciplinary scientific ocean drilling experiment designed to investigate the evolution of the oceanic crust and overlying sediments across the western flank of the Mid-Atlantic Ridge. This project comprises four International Ocean Discovery Program expeditions: fully staffed Expeditions 390 and 393 (April–August 2022) built on engineering preparations during Expeditions 390C and 395E that took place without science parties during the height of the Coronavirus Disease 2019 (COVID-19) pandemic. Through operations along a crustal flow line at ~31°S, the SAT recovered complete sedimentary sections and the upper ~40–340 m of the underlying ocean crust formed at a slow to intermediate spreading rate at the Mid-Atlantic Ridge over the past ~61 My. The sediments along this transect were originally spot cored more than 50 y ago during Deep Sea Drilling Project Leg 3 (December 1968–January 1969) to help verify the theories of seafloor spreading and plate tectonics. The SAT expeditions targeted six primary sites on 7, 15, 31, 49, and 61 Ma ocean crust that fill critical gaps in our sampling of intact in situ ocean crust with regards to crustal age, spreading rate, and sediment thickness. Drilling these sites was required to investigate the history, duration, and intensity of the low-temperature hydrothermal interactions between the aging ocean crust and the evolving South Atlantic Ocean. This knowledge will improve the quantification of past hydrothermal contributions to global biogeochemical cycles and help develop a predictive understanding of the impacts of variable hydrothermal processes and exchanges. Samples from the transect of the previously unexplored sediment- and basalt-hosted deep biosphere beneath the South Atlantic Gyre are essential to refine global biomass estimates and examine microbial ecosystems’ responses to variable conditions in a low-energy gyre and aging ocean crust. The transect is located near World Ocean Circulation Experiment Line A10, which provides a baseline for records of carbonate chemistry and deepwater mass properties across the western South Atlantic through key Cenozoic intervals of elevated atmospheric CO2 and rapid climate change. Reconstruction of the history of the deep western boundary current and deepwater formation in the Atlantic basins will yield crucial data to test hypotheses regarding the role of evolving thermohaline circulation patterns in climate change and the effects of tectonic gateways and climate on ocean acidification. During engineering Expeditions 390C and 395E, a single hole was cored through the sediment cover and into the uppermost rocks of the ocean crust with the advanced piston corer (APC) and extended core barrel (XCB) systems at five of the six primary proposed SAT sites. Reentry systems with casing were then installed either into basement or within 10 m of basement at each of those five sites. Expedition 390 (7 April–7 June 2022) conducted operations at three of the SAT sites, recovering 700 m of core (77%) over 30.3 days of on-site operations. Sediment coring, basement coring, and wireline logging were conducted at two sites on 61 Ma crust (Sites U1556 and U1557), and sediment coring was completed at the 7 Ma Site U1559. Expedition 393 operated at four sites, drilling in 12 holes to complete this initial phase of the SAT. Complete sedimentary sections were collected at Sites U1558, U1583, and U1560 on 49, 31, and 15 Ma crust, respectively, and together with 257.7 m of sediments cored during earlier operations, more than 600 m of sediments was characterized. The uppermost ocean crust was drilled at Sites U1558, U1560, and U1583 with good penetration (~130 to ~204 meters subbasement), but at the youngest ~7 Ma Site U1559, only ~43 m of basement penetration was achieved in this initial attempt. Geophysical wireline logs were aquired at Sites U1583 and U1560. Expeditions 390 and 393 established legacy sites available for future deepening and downhole basement hydrothermal and microbiological experiments at Sites U1557, U1560, and U1559 on 61, 15, and 7 Ma crust, respectively. 
    more » « less
  4. International Ocean Discovery Program (IODP) Expedition 399 will collect new cores from the Atlantis Massif (30°N; Mid-Atlantic Ridge), an oceanic core complex that has transformed our understanding of tectonic and magmatic processes at slow- and ultraslow-spreading ridges. The exposure of deep mantle rocks leads to serpentinization, with major consequences for the properties of the oceanic lithosphere, heat exchange between the ocean and crust, geochemical cycles, and microbial activity. The Lost City hydrothermal field (LCHF) is situated on its southern wall and vents warm (40°–95°C) alkaline fluids rich in hydrogen, methane, and abiotic organic molecules. The Atlantis Massif was the site of four previous expeditions (Integrated Ocean Drilling Program Expeditions 304, 305, and 340T and IODP Expedition 357) and numerous dredging and submersible expeditions. The deepest IODP hole in young (<2 My) oceanic lithosphere, Hole U1309D, was drilled 5 km north of the LCHF and reaches 1415 meters below seafloor (mbsf) through a primitive series of gabbroic rock. In contrast, during Expedition 357 a series of shallow (<16.4 mbsf) holes were drilled along the south wall of the massif, one within 0.4 km of the LCHF, and serpentinized peridotites were recovered. The hydrologic regime differs between the two locations, with a low permeability conductive regime in Hole U1309D and a high likelihood of deep permeability along the southern wall. Expedition 399 targets both locations to collect new data on ancient processes during deformation and alteration of detachment fault rocks. Recovered rocks and fluids will provide new insights into ongoing water-rock interactions, abiotic organic synthesis reactions, and the extent and diversity of life in the subseafloor in an actively serpentinizing system. We will deepen Hole U1309D to 2060 mbsf, where temperatures are expected to be ~220°C. The lithology is predicted to transition with depth from primarily gabbroic to more ultramafic material. Predicted temperatures are well above the known limits of life, so detectable hydrogen, methane, and organic molecules can be readily attributed to abiotic processes. A new ~200 m hole will be drilled on the southern ridge close to Expedition 357 Site M0069, where both deformed and undeformed serpentinites were recovered. We aim to recover a complete section through the detachment fault zone and to sample material that reflects the subseafloor biological, geochemical, and alteration processes that occur along the LCHF circulation pathway. Borehole fluids from both holes will be collected using both the Kuster Flow Through Sampler tool and the new Multi-Temperature Fluid Sampler tool. Wireline logging will provide information on downhole density and resistivity, image structural features, and document fracture orientations. A reentry system will be installed at proposed Site AMDH-02A, and Hole U1309D will be left open for future deep drilling, fluid sampling, and potentially borehole observatories. 
    more » « less
  5. International Ocean Discovery Program (IODP) Expedition 399 collected new cores from the Atlantis Massif (30°N; Mid-Atlantic Ridge), an oceanic core complex that hosts the Lost City hydrothermal field (LCHF). Studies of the Atlantis Massif and the LCHF have transformed our understanding of tectonic, magmatic, hydrothermal, and microbial processes at slow-spreading ridges. The Atlantis Massif was the site of four previous expeditions (Integrated Ocean Drilling Program Expeditions 304, 305, and 340T and IODP Expedition 357) and numerous dredging and submersible expeditions. The deepest IODP hole in young (<2 My) oceanic lithosphere, Hole U1309D, was drilled ~5 km north of the LCHF and reached 1415 meters below seafloor (mbsf) through a series of primitive gabbroic rocks. A series of 17 shallow (<16.4 mbsf) holes were also drilled at 9 sites across the south wall of the massif during Expedition 357, recovering heterogeneous rock types including hydrothermally altered peridotites, gabbroic, and basaltic rocks. The hydrologic regime differs between the two locations, with a low permeability conductive regime in Hole U1309D and a high (and possibly deep-reaching) permeability regime along the southern wall. Expedition 399 targeted Hole U1309D and the southern wall area to collect new data on ancient processes during deformation and alteration of detachment fault rocks. The recovered rocks and fluids are providing new insights into past and ongoing water-rock interactions, processes of mantle partial melting and gabbro emplacement, deformation over a range of temperatures, abiotic organic synthesis reactions, and the extent and diversity of life in the subseafloor in an actively serpentinizing system. We sampled fluids and measured temperature in Hole U1309D before deepening it to 1498 mbsf. The thermal structure was very similar to that measured during Expedition 340T, and lithologies were comparable to those found previously in Hole U1309D. A significant zone of cataclasis and alteration was found at 1451–1474 mbsf. A new Hole U1601C (proposed Site AMDH-02A) was drilled on the southern ridge close to Expedition 357 Hole M0069A, where both deformed and undeformed serpentinites had previously been recovered. Rapid drilling rates achieved a total depth of 1267.8 mbsf through predominantly ultramafic (68%) and gabbroic (32%) rocks, far surpassing the previous drilling record in a peridotite-dominated system of 201 m. Recovery was excellent overall (71%) but particularly high in peridotite-dominated sections where recovery regularly exceeded 90%. The recovery of sizable sections of largely intact material will provide robust constraints on the architecture and composition of the oceanic mantle lithosphere. The deepest portions of the newly drilled borehole may be beyond the known limits of life, providing the means to assess the role of biological activity across the transition from a biotic to an abiotic regime. Borehole fluids from both holes were collected using both the Kuster Flow-Through Sampler and the new Multi-Temperature Fluid Sampler. Wireline logging in Hole U1601C provided information on downhole density and resistivity, imaged structural features, and documented fracture orientations. A reentry system was installed in Hole U1601C, and both it and Hole U1309D were left open for future deep drilling, fluid sampling, and potential borehole observatories. 
    more » « less