An Ultra-low Power Automated Maximum Power Point Tracking Circuit with 99.9% Tracking Efficiency
- Award ID(s):
- 2144703
- PAR ID:
- 10499299
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 978-1-6654-5109-3
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Location:
- Monterey, CA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)This paper presents a motion-sensing device with the capability of harvesting energy from low-frequency motion activities that can be utilized for long-term human health monitoring. The energy harvester used in the proposed motion sensor is based on the mechanical modulation of liquid on an insulated electrode, which utilizes a technique referred to as reverse electrowetting-on-dielectric (REWOD). The generated AC signal from the REWOD is rectified to a DC voltage using a Schottky diode-based rectifier and boosted subsequently with the help of a linear charge-pump circuit and a low-dropout regulator (LDO). The constant DC voltage from the LDO (1.8 V) powers the motion-sensing read-out circuitry, which converts the generated charge into a proportional output voltage using a charge amplifier. After amplification of the motion data, a 5-bit SAR-ADC (successive-approximation register ADC) digitizes the signal to be transmitted to a remote receiver. Both the CMOS energy harvester circuit including the rectifier, the charge-pump circuit, the LDO, and the read-out circuit including the charge amplifier, and the ADC is designed in the standard 180 nm CMOS technology. The amplified amplitude goes up to 1.76 V at 10 Hz motion frequency, following linearity with respect to the frequency. The generated DC voltage from the REWOD after the rectifier and the charge-pump is found to be 2.4 V, having the voltage conversion ratio (VCR) as 32.65% at 10 Hz of motion frequency. The power conversion efficiency (PCE) of the rectifier is simulated as high as 68.57% at 10 Hz. The LDO provides the power supply voltage of 1.8 V to the read-out circuit. The energy harvester demonstrates a linear relationship between the frequency of motion and the generated output power, making it suitable as a self-powered wearable motion sensor.more » « less
An official website of the United States government
