skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Organellomic gradients in the fourth dimension
Abstract Organelles function as hubs of cellular metabolism and elements of cellular architecture. In addition to 3 spatial dimensions that describe the morphology and localization of each organelle, the time dimension describes complexity of the organelle life cycle, comprising formation, maturation, functioning, decay, and degradation. Thus, structurally identical organelles could be biochemically different. All organelles present in a biological system at a given moment of time constitute the organellome. The homeostasis of the organellome is maintained by complex feedback and feedforward interactions between cellular chemical reactions and by the energy demands. Synchronized changes of organelle structure, activity, and abundance in response to environmental cues generate the fourth dimension of plant polarity. Temporal variability of the organellome highlights the importance of organellomic parameters for understanding plant phenotypic plasticity and environmental resiliency. Organellomics involves experimental approaches for characterizing structural diversity and quantifying the abundance of organelles in individual cells, tissues, or organs. Expanding the arsenal of appropriate organellomics tools and determining parameters of the organellome complexity would complement existing -omics approaches in comprehending the phenomenon of plant polarity. To highlight the importance of the fourth dimension, this review provides examples of organellome plasticity during different developmental or environmental situations.  more » « less
Award ID(s):
1751204
PAR ID:
10499328
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Plant Physiology
Volume:
193
Issue:
1
ISSN:
0032-0889
Page Range / eLocation ID:
98 to 111
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Eukaryotic cells have evolved membrane-bound organelles, including the endoplasmic reticulum (ER), Golgi, mitochondria, peroxisomes, chloroplasts (in plants and green algae) and lysosomes/vacuoles, for specialized functions. Organelle quality control and their proper interactions are crucial both for normal cell homeostasis and function and for environmental adaption. Dynamic turnover of organelles is tightly controlled, with autophagy playing an essential role. Autophagy is a programmed process for efficient clearing of unwanted or damaged macromolecules or organelles, transporting them to vacuoles for degradation and recycling and thereby enhancing plant environmental plasticity. The specific autophagic engulfment of organelles requires activation of a selective autophagy pathway, recognition of the organelle by a receptor, and selective incorporation of the organelle into autophagosomes. While some of the autophagy machinery and mechanisms for autophagic removal of organelles is conserved across eukaryotes, plants have also developed unique mechanisms and machinery for these pathways. In this review, we discuss recent progress in understanding autophagy regulation in plants, with a focus on autophagic degradation of membrane-bound organelles. We also raise some important outstanding questions to be addressed in the future. 
    more » « less
  2. Abstract Plants continuously remodel and degrade their organelles due to damage from their metabolic activities and environmental stressors, as well as an integral part of their cell differentiation programs. Whereas certain organelles use local hydrolytic enzymes for limited remodeling, most of the pathways that control the partial or complete dismantling of organelles rely on vacuolar degradation. Specifically, selective autophagic pathways play a crucial role in recognizing and sorting plant organelle cargo for vacuolar clearance, especially under cellular stress conditions induced by factors like heat, drought, and damaging light. In these short reviews, we discuss the mechanisms that control the vacuolar degradation of chloroplasts, mitochondria, endoplasmic reticulum, Golgi, and peroxisomes, with an emphasis on autophagy, recently discovered selective autophagy receptors for plant organelles, and crosstalk with other catabolic pathways. 
    more » « less
  3. Plant organelles predominantly rely on the actin cytoskeleton and the myosin motors for long-distance trafficking, while using microtubules and the kinesin motors mostly for short-range movement. The distribution and motility of organelles in the plant cell are fundamentally important to robust plant growth and defense. Chloroplasts, mitochondria, and peroxisomes are essential organelles in plants that function independently and coordinately during energy metabolism and other key metabolic processes. In response to developmental and environmental stimuli, these energy organelles modulate their metabolism, morphology, abundance, distribution and motility in the cell to meet the need of the plant. Consistent with their metabolic links in processes like photorespiration and fatty acid mobilization is the frequently observed inter-organellar physical interaction, sometimes through organelle membranous protrusions. The development of various organelle-specific fluorescent protein tags has allowed the simultaneous visualization of organelle movement in living plant cells by confocal microscopy. These energy organelles display an array of morphology and movement patterns and redistribute within the cell in response to changes such as varying light conditions, temperature fluctuations, ROS-inducible treatments, and during pollen tube development and immune response, independently or in association with one another. Although there are more reports on the mechanism of chloroplast movement than that of peroxisomes and mitochondria, our knowledge of how and why these three energy organelles move and distribute in the plant cell is still scarce at the functional and mechanistic level. It is critical to identify factors that control organelle motility coupled with plant growth, development, and stress response. 
    more » « less
  4. Abstract Since the neurobiological inception of optogenetics, light‐controlled molecular perturbations have been applied in many scientific disciplines to both manipulate and observe cellular function. Proteins exhibiting light‐sensitive conformational changes provide researchers with avenues for spatiotemporal control over the cellular environment and serve as valuable alternatives to chemically inducible systems. Optogenetic approaches have been developed to target proteins to specific subcellular compartments, allowing for the manipulation of nuclear translocation and plasma membrane morphology. Additionally, these tools have been harnessed for molecular interrogation of organelle function, location, and dynamics. Optogenetic approaches offer novel ways to answer fundamental biological questions and to improve the efficiency of bioengineered cell factories by controlling the assembly of synthetic organelles. This review first provides a summary of available optogenetic systems with an emphasis on their organelle‐specific utility. It then explores the strategies employed for organelle targeting and concludes by discussing our perspective on the future of optogenetics to control subcellular structure and organization. This article is categorized under:Metabolic Diseases > Molecular and Cellular Physiology 
    more » « less
  5. Abstract Proper regulation of organelle dynamics and inter-organelle contacts is critical for cellular health and function. Both the endoplasmic reticulum (ER) and actin cytoskeleton are known to regulate organelle dynamics, but how, when, and where these two subcellular components are coordinated to control organelle dynamics remains unclear. Here, we show that ER-associated actin consistently marks mitochondrial, endosomal, and lysosomal fission sites. We also show that actin polymerization by the ER-anchored isoform of the formin protein INF2 is a key regulator of the morphology and mobility of these organelles. Together, our findings establish a mechanism by which INF2-mediated polymerization of ER-associated actin at ER-organelle contacts regulates organelle dynamics. 
    more » « less