skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large protistan mixotrophs in the North Atlantic Continuous Plankton Recorder time series: associated environmental conditions and trends
Aquatic ecologists are integrating mixotrophic plankton – here defined as microorganisms with photosynthetic and phagotrophic capacity – into their understanding of marine food webs and biogeochemical cycles. Understanding mixotroph temporal and spatial distributions, as well as the environmental conditions under which they flourish, is imperative to understanding their impact on trophic transfer and biogeochemical cycling. Mixotrophs are hypothesized to outcompete strict photoautotrophs and heterotrophs when either light or nutrients are limiting, but testing this hypothesis has been hindered by the challenge of identifying and quantifying mixotrophs in the field. Using field observations from a multi-decadal northern North Atlantic dataset, we calculated the proportion of organisms that are considered mixotrophs within individual microplankton samples. We also calculated a “trophic index” that represents the relative proportions of photoautotrophs (phytoplankton), mixotrophs, and heterotrophs (microzooplankton) in each sample. We found that the proportion of mixotrophs was positively correlated with temperature, and negatively with either light or inorganic nutrient concentration. This proportion was highest during summertime thermal stratification and nutrient limitation, and lowest during the North Atlantic spring bloom period. Between 1958 and 2015, changes in the proportion of mixotrophs coincided with changes in the Atlantic Multi-decadal Oscillation (AMO), was highest when the AMO was positive, and showed a significant uninterrupted increase in offshore regions from 1992-2015. This study provides an empirical foundation for future experimental, time series, and modeling studies of aquatic mixotrophs.  more » « less
Award ID(s):
1925796 2230103 2230102
PAR ID:
10499357
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Frontiers in Marine Science
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
11
ISSN:
2296-7745
Subject(s) / Keyword(s):
mixotroph continuous plankton recorder North Atlantic, AMO, stratification, nutrient limitation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mixotrophy, the combination of autotrophic and heterotrophic nutrition, is a common trophic strategy among unicellular eukaryotes in the ocean. There are a number of hypotheses about the conditions that select for mixotrophy, and field studies have documented the prevalence of mixotrophy in a range of environments. However, there is currently little evidence for how mixotrophy varies across environmental gradients, and whether empirical patterns support theoretical predictions. Here I synthesize experiments that have quantified the abundance of phototrophic, mixotrophic, and heterotrophic nanoflagellates, to ask whether there are broad patterns in the prevalence of mixotrophy (relative to pure autotrophy and heterotrophy), and to ask whether observed patterns are consistent with a trait-based model of trophic strategies. The data suggest that mixotrophs increase in abundance at lower latitudes, while autotrophs and heterotrophs do not, and that this may be driven by increased light availability. Both mixotrophs and autotrophs increase greatly in productive coastal environments, while heterotrophs increase only slightly. These patterns are consistent with a model of resource competition in which nutrients and carbon can both limit growth and mixotrophs experience a trade-off in allocating biomass to phagotrophy vs. autotrophic functions. Importantly, mixotrophy is selected for under a range of conditions even when mixotrophs experience a penalty for using a generalist trophic strategy, due to the synergy between photosynthetically derived carbon and prey-derived nutrients. For this reason mixotrophy is favored relative to specialist strategies by increased irradiance, while at the same time increased nutrient supply increases the competitive ability of mixotrophs against heterotrophs. 
    more » « less
  2. Abstract Climate warming in combination with nutrient enrichment can greatly promote phytoplankton proliferation and blooms in eutrophic waters. Lake Taihu, China, is a large, shallow and eutrophic system. Since 2007, this lake has experienced extensive nutrient input reductions aimed at controlling cyanobacterial blooms. However, intense cyanobacterial blooms have persisted through 2017 with a record‐setting bloom occurring in May 2017. Causal analysis suggested that this bloom was sygenerically driven by high external loading from flooding in 2016 in the Taihu catchment and a notable warmer winter during 2016/2017. High precipitation during 2016 was associated with a strong 2015/2016 El Niño in combination with the joint effects of Atlantic Multi‐decadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), while persistent warmth during 2016/2017 was strongly related to warm phases of AMO and PDO. The 2017 blooms elevated water column pH and led to dissolved oxygen depletion near the sediment, both of which mobilized phosphorus from the sediment to overlying water, further promoting cyanobacterial blooms. Our finding indicates that regional climate anomalies exacerbated eutrophication via a positive feedback mechanism, by intensifying internal nutrient cycling and aggravating cyanobacterial blooms. In light of global expansion of eutrophication and blooms, especially in large, shallow and eutrophic lakes, these regional effects of climate anomalies are nested within larger scale global warming predicted to continue in the foreseeable future. 
    more » « less
  3. Abstract Recent studies demonstrated the existence of a conspicuous atmospheric combination mode (C-mode) originating from nonlinear interactions between El Niño–Southern Oscillation (ENSO) and the Pacific warm pool annual cycle (AC). Here we find that the C-mode exhibits prominent decadal amplitude variations during the ENSO decaying boreal spring season. It is revealed that the Atlantic multidecadal oscillation (AMO) can largely explain this waxing and waning in amplitude. A robust positive correlation between ENSO and the C-mode is detected during a negative AMO phase but not during a positive phase. Similar results can also be found in the relationship of ENSO with 1) the western North Pacific (WNP) anticyclone and 2) spring precipitation over southern China, both of which are closely associated with the C-mode. We suggest that ENSO property changes due to an AMO modulation play a crucial role in determining these decadal shifts. During a positive AMO phase, ENSO events are distinctly weaker than those in an AMO negative phase. In addition, El Niño events concurrent with a positive AMO phase tend to exhibit a westward-shifted sea surface temperature (SST) anomaly pattern. These SST characteristics during the positive AMO phase are both not conducive to the development of the meridionally asymmetric C-mode atmospheric circulation pattern and thus reduce the ENSO/C-mode correlation on decadal time scales. These observations can be realistically reproduced by a coupled general circulation model (CGCM) experiment in which North Atlantic SSTs are nudged to reproduce a 50-yr sinusoidally varying AMO evolution. Our conclusion carries important implications for understanding seasonally modulated ENSO dynamics and multiscale climate impacts over East Asia. 
    more » « less
  4. The Arctic Oscillation (AO) has been observed to undergo distinct decadal structural fluctuations that significantly influence regional weather and climate. Understanding the drivers and mechanisms behind the AO’s spatial nonstationarity is critical for improving climate predictions related to the AO. Wepresent evidence that the Atlantic Multidecadal Oscillation (AMO) plays a pivotal role in modulating AO’s Pacific center in recent decades. The poleward amplified cooling associated with negative AMO enhances the north-south temperature gradient and results the strengthened westerly winds and stratospheric polar vortex (SPV) responses, which reflects more planetary waves from the North Pacific to the North Atlantic. This enhances the atmospheric coupling between these regions and leads to amore pronounced Pacific center within theAOpattern.Numerical simulations fromECHAM5 and 35 CMIP6 models further corroborate the essential role of the AMO. These findings advance our understanding of the mechanisms driving the variability of the AO pattern. 
    more » « less
  5. Abstract Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g. diatoms and kelp) or parasitic species (e.g. oomycetes, Blastocystis), with free-living heterotrophs largely overlooked. Though our attention is slowly turning towards heterotrophs, we have only a limited understanding of their biology due to a lack of cultured models. Recent metagenomic and single-cell investigations have revealed the species richness and ecological importance of stramenopiles—especially heterotrophs. However, our lack of knowledge of the cell biology and behaviour of these organisms leads to our inability to match species to their particular ecological functions. Because photosynthetic stramenopiles are studied independently of their heterotrophic relatives, they are often treated separately in the literature. Here, we present stramenopiles as a unified group with shared synapomorphies and evolutionary history. We introduce the main lineages, describe their important biological and ecological traits, and provide a concise update on the origin of the ochrophyte plastid. We highlight the crucial role of heterotrophs and mixotrophs in our understanding of stramenopiles with the goal of inspiring future investigations in taxonomy and life history. To understand each of the many diversifications within stramenopiles—towards autotrophy, osmotrophy, or parasitism—we must understand the ancestral heterotrophic flagellate from which they each evolved. We hope the following will serve as a primer for new stramenopile researchers or as an integrative refresher to those already in the field. 
    more » « less