skip to main content


Title: Highly Deformable Rigid Glassy Conjugated Polymeric Thin Films
Abstract

Wearable devices benefit from the use of stretchable conjugated polymers (CPs). Traditionally, the design of stretchable CPs is based on the assumption that a low elastic modulus (E) is crucial for achieving high stretchability. However, this research, which analyzes the mechanical properties of 65 CP thin films, challenges this notion. It is discovered that softness alone does not determine stretchability; rather, it is the degree of entanglement that is critical. This means that rigid CPs can also exhibit high stretchability, contradicting conventional wisdom. To inverstigate further, the mechanical behavior, electrical properties, and deformation mechanism of two model CPs: a glassy poly(3‐butylthiophene‐2,5‐diyl) (P3BT) with anEof 2.2 GPa and a viscoelastic poly(3‐octylthiophene‐2,5‐diyl) (P3OT) with anEof 86 MPa, are studied. Ex situ transmission X‐ray scattering and polarized UV–vis spectroscopy revealed that only the initial strain (i.e., <20%) exhibits different chain alignment mechanisms between two polymers, while both rigid and soft P3ATs showed similarly behavior at larger strains. By challenging the conventional design metric of lowEfor high stretchability and highlighting the importance of entanglement, it is hoped to broaden the range of CPs available for use in wearable devices.

 
more » « less
Award ID(s):
2047689
PAR ID:
10499362
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiely
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
33
Issue:
50
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Polymer semiconductors (PSCs) are essential active materials in mechanically stretchable electronic devices. However, many exhibit low fracture strain due to their rigid chain conformation and the presence of large crystalline domains. Here, a PSC/elastomer blend, poly[((2,6‐bis(thiophen‐2‐yl)‐3,7‐bis(9‐octylnonadecyl)thieno[3,2‐b]thieno[2′,3′:4,5]thieno[2,3‐d]thiophene)‐5,5′‐diyl)(2,5‐bis(8‐octyloctadecyl)‐3,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4‐dione)‐5,5′‐diyl]] (P2TDPP2TFT4) and polystyrene‐block‐poly(ethylene‐ran‐butylene)‐block‐polystyrene (SEBS) are systematically investigated. Specifically, the effects of molecular weight of both SEBS and P2TDPP2TFT4 on the resulting blend morphology, mechanical, and electrical properties are explored. In addition to commonly used techniques, atomic force microscopy‐based nanomechanical images are used to provide additional insights into the blend film morphology. Opposing trends in SEBS‐induced aggregation are observed for the different P2TDPP2TFT4 molecular weights upon increasing the SEBS molecular weight from 87 to 276 kDa. Furthermore, these trends are seen in device performance trends for both molecular weights of P2TDPP2TFT4. SEBS molecular weight also has a substantial influence on the mesoscale phase separation. Strain at fracture increases dramatically upon blending, reaching a maximum value of 640% ± 20% in the blended films measured with film‐on‐water method. These results highlight the importance of molecular weight for electronic devices. In addition, this study provides valuable insights into appropriate polymer selections for stretchable semiconducting thin films that simultaneously possess excellent mechanical and electrical properties.

     
    more » « less
  2. Abstract

    Conjugated polymers (CPs) are promising semiconductors for intrinsically stretchable electronic devices. Ideally, such CPs should exhibit high charge mobility, excellent stability, and high stretchability. However, converging all these desirable properties in CPs has not been achieved via molecular design and/or device engineering. This work details the design, synthesis and characterization of a random polythiophene (RP-T50) containing ~50 mol% of thiophene units with a thermocleavable tertiary ester side chain and ~50 mol% of unsubstituted thiophene units, which, upon thermocleavage of alkyl chains, shows significant improvement of charge mobility and stability. Thermal annealing a RP-T50 film coated on a stretchable polydimethylsiloxane substrate spontaneously generates wrinkling in the polymer film, which effectively enhances the stretchability of the polymer film. The wrinkled RP-T50-based stretchable sensors can effectively detect humidity, ethanol, temperature and light even under 50% uniaxial and 30% biaxial strains. Our discoveries offer new design rationale of strategically applying CPs to intrinsically stretchable electronic systems.

     
    more » « less
  3. Abstract

    In order to apply polymer semiconductors to stretchable electronics, they need to be easily deformed under strain without being damaged. A small number of conjugated polymers, typically with semicrystalline packing structures, have been reported to exhibit mechanical stretchability. Herein, a method is reported to modify polymer semiconductor packing‐structure using a molecular additive, dioctyl phthalate (DOP), which is found to act as a molecular spacer, to be inserted between the amorphous chain networks and disrupt the crystalline packing. As a result, large‐crystal growth is suppressed while short‐range aggregations of conjugated polymers are promoted, which leads to an improved mechanical stretchability without affecting charge‐carrier transport. Due to the reduced conjugated polymer intermolecular interactions, strain‐induced chain alignment and crystallization are observed. By adding DOP to a well‐known conjugated polymer, poly[2,5‐bis(4‐decyltetradecyl)pyrrolo[3,4‐c]pyrrole‐1,4‐(2H,5H)‐dione‐(E)‐1,2‐di(2,2′‐bithiophen‐5‐yl)ethene] (DPPTVT), stretchable transistors are obtained with anisotropic charge‐carrier mobilities under strain, and stable current output under strain up to 100%.

     
    more » « less
  4. null (Ed.)
    Development of highly stretchable and sensitive soft strain sensors is of great importance for broad applications in artificial intelligence, wearable devices, and soft robotics, but it proved to be a profound challenge to integrate the two seemingly opposite properties of high stretchability and sensitivity into a single material. Herein, we designed and synthesized a new fully polymeric conductive hydrogel with an interpenetrating polymer network (IPN) structure made of conductive PEDOT:PSS polymers and zwitterionic poly(HEAA- co -SBAA) polymers to achieve a combination of high mechanical, biocompatible, and sensing properties. The presence of hydrogen bonding, electrostatic interactions, and IPN structures enabled poly(HEAA- co -SBAA)/PEDOT:PSS hydrogels to achieve an ultra-high stretchability of 4000–5000%, a tensile strength of ∼0.5 MPa, a rapid mechanical recovery of 70–80% within 5 min, fast self-healing in 3 min, and a strong surface adhesion of ∼1700 J m −2 on different hard and soft substrates. Moreover, the integration of zwitterionic polySBAA and conductive PEDOT:PSS facilitated charge transfer via optimal conductive pathways. Due to the unique combination of superior stretchable, self-adhesive, and conductive properties, the hydrogels were further designed into strain sensors with high sensing stability and robustness for rapidly and accurately detecting subtle strain- and pressure-induced deformation and human motions. Moreover, an in-house mechanosensing platform provides a new tool to real-time explore the changes and relationship between network structures, tensile stress, and electronic resistance. This new fully polymeric hydrogel strain sensor, without any conductive fillers, holds great promise for broad human-machine interface applications. 
    more » « less
  5. Abstract

    For wearable and implantable electronics applications, developing intrinsically stretchable polymer semiconductor is advantageous, especially in the manufacturing of large‐area and high‐density devices. A major challenge is to simultaneously achieve good electrical and mechanical properties for these semiconductor devices. While crystalline domains are generally needed to achieve high mobility, amorphous domains are necessary to impart stretchability. Recent progresses in the design of high‐performance donor–acceptor polymers that exhibit low degrees of energetic disorder, while having a high fraction of amorphous domains, appear promising for polymer semiconductors. Here, a low crystalline, i.e., near‐amorphous, indacenodithiophene‐co‐benzothiadiazole (IDTBT) polymer and a semicrystalline thieno[3,2‐b]thiophene‐diketopyrrolopyrrole (DPPTT) are compared, for mechanical properties and electrical performance under strain. It is observed that IDTBT is able to achieve both a high modulus and high fracture strain, and to preserve electrical functionality under high strain. Next, fully stretchable transistors are fabricated using the IDTBT polymer and observed mobility ≈0.6 cm2V−1s−1at 100% strain along stretching direction. In addition, the morphological evolution of the stretched IDTBT films is investigated by polarized UV–vis and grazing‐incidence X‐ray diffraction to elucidate the molecular origins of high ductility. In summary, the near‐amorphous IDTBT polymer signifies a promising direction regarding molecular design principles toward intrinsically stretchable high‐performance polymer semiconductor.

     
    more » « less