skip to main content


This content will become publicly available on August 1, 2024

Title: Inhibition of Pancreatic Cancer Cells by Different Amyloid Proteins Reveals an Inverse Relationship between Neurodegenerative Diseases and Cancer
Neurodegenerative diseases and cancers are considered to be two families of diseases caused by completely opposite cell-death mechanisms: the former caused by premature cell death, with the latter due to the increased resistance to cell death. Growing epidemiologic evidence appear to suggest an inverse correlation between neurodegenerative diseases and cancers. However, pathological links, particularly from a protein-cell interaction perspective, between these two families of diseases remains to be proven. Here, a fundamental study investigates the effects of three amyloid proteins of Aβ (associated with AD), hIAPP (associated with T2D), and hCT (associated with MTC) on pancreatic cancer (PANC-1) cells. Collective results demonstrate a general inhibitory activity of all of three amyloid proteins on cancer cell proliferation, but inhibition efficiencies are strongly dependent on amyloid sequence (Aβ, hIAPP, hCT), concentration (IC25, IC50, IC75), and aggregation states (monomers, oligomers). Amyloid proteins exhibit two pathways against cancer cells: amyloid monomer-induced ROS production to inhibit cell growth and amyloid oligomer-induced membrane disruption to kill cells. Collectively, the results demonstrate a general inhibition function of amyloid proteins to induce cancer cell death by preventing cell proliferation, suppressing cell migration, promoting reactive oxygen species production, and disrupting cell membranes.  more » « less
Award ID(s):
2107619
NSF-PAR ID:
10499369
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Biology
Volume:
7
Issue:
8
ISSN:
2701-0198
Page Range / eLocation ID:
2300070
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Prevention and detection of misfolded amyloid proteins and their β-structure-rich aggregates are the two promising but different (pre)clinical strategies to treat and diagnose neurodegenerative diseases including Alzheimer's diseases (AD) and type II diabetes (T2D). Conventional strategies prevent the design of new pharmaceutical molecules with both amyloid inhibition and detection functions. Here, we propose a “like-interacts-like” design principle to de novo design a series of new self-assembling peptides (SAPs), enabling them to specifically and strongly interact with conformationally similar β-sheet motifs of Aβ (association with AD) and hIAPP (association with T2D). Collective in vitro experimental data from thioflavin (ThT), atomic force microscopy (AFM), circular dichroism (CD), and cell assay demonstrate that SAPs possess two integrated functions of (i) amyloid inhibition for preventing both Aβ and hIAPP aggregation by 34–61% and reducing their induced cytotoxicity by 7.6–35.4% and (ii) amyloid sensing for early detection of toxic Aβ and hIAPP aggregates using in-house SAP-based paper sensors and SPR sensors. The presence of both amyloid inhibition and detection in SAPs stems from strong molecular interactions between amyloid aggregates and SAPs, thus providing a new multi-target model for expanding the new therapeutic potentials of SAPs and other designs with built-in amyloid inhibition and detection functions. 
    more » « less
  2. Amyloid formation and microbial infection are the two common pathological causes of neurogenerative diseases, including Alzheimer's disease (AD), type II diabetes (T2D), and medullary thyroid carcinoma (MTC). While significant efforts have been made to develop different prevention strategies and preclinical hits for these diseases, conventional design strategies of amyloid inhibitors are mostly limited to either a single prevention mechanism (amyloid cascade vs. microbial infection) or a single amyloid protein (Aβ, hIAPP, or hCT), which has prevented the launch of any successful drug on the market. Here, we propose and demonstrate a new “anti-amyloid and anti-bacteria” strategy to repurpose two intestinal defensins, human α-defensin 6 (HD-6) and human β-defensin 1 (HBD-1), as multiple-target, dual-function, amyloid inhibitors. Both HD-6 and HBD-1 can cross-seed with three amyloid peptides, Aβ (associated with AD), hIAPP (associated with T2D), and hCT (associated with MTC), to prevent their aggregation towards amyloid fibrils from monomers and oligomers, rescue SH-SY5Y and RIN-m5F cells from amyloid-induced cytotoxicity, and retain their original antimicrobial activity against four common bacterial strains at sub-stoichiometric concentrations. Such sequence-independent anti-amyloid and anti-bacterial functions of intestinal defensins mainly stem from their cross-interactions with amyloid proteins through amyloid-like mimicry of β-sheet associations. In a broader view, this work provides a new out-of-the-box thinking to search and repurpose a huge source of antimicrobial peptides as amyloid inhibitors, allowing the blocking of the two interlinked pathological pathways and bidirectional communication between the central nervous system and intestines via the gut–brain axis associated with neurodegenerative diseases. 
    more » « less
  3. Abstract

    Amyloid protein aggregation is associated with many neurodegenerative diseases, including amyloid‐β (Aβ)in Alzheimer disease, human islet amyloid polypeptide (hIAPP) in type II diabetes, and human calcitonin (hCT) in medullary thyroid carcinoma. Significant efforts have been made to develop different diagnostic and prevention strategies for the early detection and intervention of these disease‐causative protein aggregates. However, conventional design wisdoms are mostly limited to the molecules with either single function (amyloid imaging or amyloid prevention) or single targeting protein (Aβ, hIAPP, or hCT). Here, a rational design strategy of an amyloid‐aggregation‐induced emission (AIE)‐active molecule is demonstrated by conjugating an amyloid fragment of GNNQQNY (G7) with an AIE fluorescent molecule of triphenylvinyl benzoic acid (namely, G7‐TBA), making G7‐TBA as multiple‐target, dual‐function, amyloid probes and amyloid modulators for detecting, monitoring, and altering amyloid aggregation of three different amyloid proteins (Aβ, hIAPP, and hCT). G7‐TBA probe shows conformationally specific binding affinities to amyloid aggregates, switching from an “off” state (low fluorescence) for amyloid monomers to an “on” state (high fluorescence) for β‐structure‐rich amyloid oligomers and fibrils in aqueous solution. Further surface immobilization of TBA probes on surface plasmon resonance surfaces allows to amplify detection sensitivity and binding affinity to amyloid aggregates formed at different aggregation stages. G7‐TBA as amyloid modulator enables acceleration of amyloid fibrillization and selectively protects cells from hIAPP‐induced toxicity. The distinct amyloid detection and modulation of G7‐TBA are essentially derived from the cross‐seeding between G7 and amyloid aggregation via β‐structure interaction, which by far exceed the binding affinity between commercial ThT and amyloid aggregates. Such design concepts of amyloid‐AIE conjugates can be further explored as multiple‐function and target probes and/or modulators for biomedical applications.

     
    more » « less
  4. Amyloid aggregation and microbial infection are considered as pathological risk factors for developing amyloid diseases, including Alzheimer's disease (AD), type II diabetes (T2D), Parkinson's disease (PD), and medullary thyroid carcinoma (MTC). Due to the multifactorial nature of amyloid diseases, single-target drugs and treatments have mostly failed to inhibit amyloid aggregation and microbial infection simultaneously, thus leading to marginal benefits for amyloid inhibition and medical treatments. Herein, we proposed and demonstrated a new “anti-amyloid and antimicrobial hypothesis” to discover two host-defense antimicrobial peptides of α-defensins containing β-rich structures (human neutrophil peptide of HNP-1 and rabbit neutrophil peptide of NP-3A), which have demonstrated multi-target, sequence-independent functions to (i) prevent the aggregation and misfolding of different amyloid proteins of amyloid-β (Aβ, associated with AD), human islet amyloid polypeptide (hIAPP, associated with T2D), and human calcitonin (hCT, associated with MTC) at sub-stoichiometric concentrations, (ii) reduce amyloid-induced cell toxicity, and (iii) retain their original antimicrobial activity upon the formation of complexes with amyloid peptides. Further structural analysis showed that the sequence-independent amyloid inhibition function of α-defensins mainly stems from their cross-interactions with amyloid proteins via β-structure interactions. The discovery of antimicrobial peptides containing β-structures to inhibit both microbial infection and amyloid aggregation greatly expands the new therapeutic potential of antimicrobial peptides as multi-target amyloid inhibitors for better understanding pathological causes and treatments of amyloid diseases. 
    more » « less
  5. Misfolding and aggregation of amyloid peptides are critical pathological events in numerous protein misfolding diseases (PMDs), such as Alzheimer's disease (AD), type II diabetes (T2D), and medullary thyroid carcinoma (MTC). While developing effective amyloid detectors and inhibitors to probe and prevent amyloid aggregation is a crucial diagnostic and therapeutic strategy for treating debilitating diseases, it is important to recognize that amyloid detection and amyloid prevention are two distinct strategies for developing pharmaceutical drugs. Here, we reported novel fluorescent BO21 as a versatile “dual-function, multi-target” amyloid probe and inhibitor for detecting and preventing amyloid aggregates of different sequences (Aβ, hIAPP, or hCT) and sizes (monomers, oligomers, or fibrils). As an amyloid probe, BO21 demonstrated a higher sensitivity and binding affinity to oligomeric and fibrillar amyloids compared to ThT, resulting in up to 18–39 fold fluorescence enhancements. As an amyloid inhibitor, BO21 also demonstrated its strong amyloid inhibition property by effectively preventing amyloid aggregation, disaggregating preformed amyloid fibrils, and reducing amyloid-induced cytotoxicity. The findings of this study offer a new perspective for the discovery of dual-functional amyloid probes and inhibitors, which have the potential to greatly expand the diagnostic and therapeutic treatments available for PMDs. 
    more » « less