skip to main content


Title: Repurposing Antimicrobial Protegrin-1 as a Dual-Function Amyloid Inhibitor via Cross-seeding
Amyloids and antimicrobial peptides have traditionally been recognized as distinct families with separate biological functions and targets. However, certain amyloids and antimicrobial peptides share structural and functional characteristics that contribute to the development of neurodegenerative diseases. Specifically, the aggregation of amyloid-β (Aβ) and microbial infections are interconnected pathological factors in Alzheimer’s disease (AD). In this study, we propose and demonstrate a novel repurposing strategy for an antimicrobial peptide of protegrin-1 (PG-1), which exhibits the ability to simultaneously prevent Aβ aggregation and microbial infection both in vitro and in vivo. Through a comprehensive analysis using protein, cell, and worm assays, we uncover multiple functions of PG-1 against Aβ, including the following: (i) complete inhibition of Aβ aggregation at a low molar ratio of PG-1/Aβ = 0.25:1, (ii) disassembly of the preformed Aβ fibrils into amorphous aggregates, (iii) reduction of Aβ-induced cytotoxicity in SH-SY5Y cells and transgenic GMC101 nematodes, and (iv) preservation of original antimicrobial activity against P.A., E.coli., S.A., and S.E. strains in the presence of Aβ. Mechanistically, the dual anti-amyloid and anti-bacterial functions of PG-1 primarily arise from its strong binding to distinct Aβ seeds (KD = 1.24–1.90 μM) through conformationally similar β-sheet associations. This work introduces a promising strategy to repurpose antimicrobial peptides as amyloid inhibitors, effectively targeting multiple pathological pathways in AD.  more » « less
Award ID(s):
2107619
PAR ID:
10499370
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Chemical Neuroscience
Volume:
14
Issue:
17
ISSN:
1948-7193
Page Range / eLocation ID:
3143-3155
Subject(s) / Keyword(s):
protegrin-1 cross-seeding amyloid probe microbial infection amyloid disease
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Amyloid formation and microbial infection are the two common pathological causes of neurogenerative diseases, including Alzheimer's disease (AD), type II diabetes (T2D), and medullary thyroid carcinoma (MTC). While significant efforts have been made to develop different prevention strategies and preclinical hits for these diseases, conventional design strategies of amyloid inhibitors are mostly limited to either a single prevention mechanism (amyloid cascade vs. microbial infection) or a single amyloid protein (Aβ, hIAPP, or hCT), which has prevented the launch of any successful drug on the market. Here, we propose and demonstrate a new “anti-amyloid and anti-bacteria” strategy to repurpose two intestinal defensins, human α-defensin 6 (HD-6) and human β-defensin 1 (HBD-1), as multiple-target, dual-function, amyloid inhibitors. Both HD-6 and HBD-1 can cross-seed with three amyloid peptides, Aβ (associated with AD), hIAPP (associated with T2D), and hCT (associated with MTC), to prevent their aggregation towards amyloid fibrils from monomers and oligomers, rescue SH-SY5Y and RIN-m5F cells from amyloid-induced cytotoxicity, and retain their original antimicrobial activity against four common bacterial strains at sub-stoichiometric concentrations. Such sequence-independent anti-amyloid and anti-bacterial functions of intestinal defensins mainly stem from their cross-interactions with amyloid proteins through amyloid-like mimicry of β-sheet associations. In a broader view, this work provides a new out-of-the-box thinking to search and repurpose a huge source of antimicrobial peptides as amyloid inhibitors, allowing the blocking of the two interlinked pathological pathways and bidirectional communication between the central nervous system and intestines via the gut–brain axis associated with neurodegenerative diseases. 
    more » « less
  2. Amyloid aggregation and microbial infection are considered as pathological risk factors for developing amyloid diseases, including Alzheimer's disease (AD), type II diabetes (T2D), Parkinson's disease (PD), and medullary thyroid carcinoma (MTC). Due to the multifactorial nature of amyloid diseases, single-target drugs and treatments have mostly failed to inhibit amyloid aggregation and microbial infection simultaneously, thus leading to marginal benefits for amyloid inhibition and medical treatments. Herein, we proposed and demonstrated a new “anti-amyloid and antimicrobial hypothesis” to discover two host-defense antimicrobial peptides of α-defensins containing β-rich structures (human neutrophil peptide of HNP-1 and rabbit neutrophil peptide of NP-3A), which have demonstrated multi-target, sequence-independent functions to (i) prevent the aggregation and misfolding of different amyloid proteins of amyloid-β (Aβ, associated with AD), human islet amyloid polypeptide (hIAPP, associated with T2D), and human calcitonin (hCT, associated with MTC) at sub-stoichiometric concentrations, (ii) reduce amyloid-induced cell toxicity, and (iii) retain their original antimicrobial activity upon the formation of complexes with amyloid peptides. Further structural analysis showed that the sequence-independent amyloid inhibition function of α-defensins mainly stems from their cross-interactions with amyloid proteins via β-structure interactions. The discovery of antimicrobial peptides containing β-structures to inhibit both microbial infection and amyloid aggregation greatly expands the new therapeutic potential of antimicrobial peptides as multi-target amyloid inhibitors for better understanding pathological causes and treatments of amyloid diseases. 
    more » « less
  3. Since hIAPP (human islet amyloid polypeptide) aggregation and microbial infection are recognized as significant risk factors that contribute to the pathogenesis of type II diabetes (T2D), targeting these catastrophic processes simultaneously may have a greater impact on the prevention and treatment of T2D. Different from the well-studied hIAPP inhibitors, here we propose and demonstrate a repurposing strategy for an antimicrobial peptide, aurein, which can simultaneously modulate hIAPP aggregation and inhibit microbial infection. Collective data from protein, cell, and bacteria assays revealed multiple functions of aurein including (i) promotion of hIAPP aggregation at a low molar ratio of aurein:hIAPP = 0.5 : 1–2 : 1, (ii) reduction of hIAPP-induced cytotoxicity in RIN-m5F cells, and (iii) preservation of original antimicrobial activity against E. coli., S.A., and S.E. strains in the presence of hIAPP. These functions of aurein are mainly derived from its strong binding to different hIAPP seeds through conformationally similar β-sheet association. Our study provides a promising avenue for the repurposing of antimicrobial peptides (such as aurein) as amyloid modulators for blocking at least two pathological pathways in T2D. 
    more » « less
  4. Alzheimer's disease (AD) has been consistently related to the formation of senile amyloid plaques mainly composed of amyloid β (Aβ) peptides. The toxicity of Aβ aggregates has been indicated to be responsible for AD pathology. One scenario to decrease Aβ toxicity is the development of effective inhibitors against Aβ amyloid formation. In this study, we investigate the effect of gallium nitride nanoparticles (GaN NPs) as inhibitors of Aβ40 amyloid formation using a combination of biophysical approaches. Our results show that the lag phase of Aβ40 aggregation kinetics is significantly retarded by GaN NPs in a concentration dependent manner, implying the activity of GaN NPs in interfering with the formation of the crucial nucleus during Aβ aggregation. Our results also show that GaN NPs can reduce the amyloid fibril elongation rate in the course of the aggregation kinetics. It is speculated that the high polarization characteristics of GaN NPs may provoke a strong interaction between the particles and Aβ40 peptide and in this way decrease self-association of the peptide monomers to form amyloids. 
    more » « less
  5. The aggregation of amyloids into toxic oligomers is believed to be a key pathogenic event in the onset of Alzheimer's disease. Peptidomimetic modulators capable of destabilizing the propagation of an extended network of β-sheet fibrils represent a potential intervention strategy. Modifications to amyloid-beta (Aβ) peptides derived from the core domain have afforded inhibitors capable of both antagonizing aggregation and reducing amyloid toxicity. Previous work from our laboratory has shown that peptide backbone amination stabilizes β-sheet-like conformations and precludes β-strand aggregation. Here, we report the synthesis of N -aminated hexapeptides capable of inhibiting the fibrillization of full-length Aβ 42 . A key feature of our design is N -amino substituents at alternating backbone amides within the aggregation-prone Aβ 16–21 sequence. This strategy allows for maintenance of an intact hydrogen-bonding backbone edge as well as side chain moieties important for favorable hydrophobic interactions. An N -amino scan of Aβ 16–21 resulted in the identification of peptidomimetics that block Aβ 42 fibrilization in several biophysical assays. 
    more » « less