skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intrauterine exposure to nicotine through maternal vaping disrupts embryonic lung and skeletal development via the Kcnj2 potassium channel
Smoking cigarettes during pregnancy is associated with adverse effects on infants including low birth weight, defective lung development, and skeletal abnormalities. Pregnant women are increasingly turning to vaping [use of electronic (e)-cigarettes] as a perceived safer alternative to cigarettes. However, nicotine disrupts fetal development, suggesting that like cigarette smoking, nicotine vaping may be detrimental to the fetus. To test the impact of maternal vaping on fetal lung and skeletal development in mice, pregnant dams were exposed to e-cigarette vapor throughout gestation. At embryonic day (E)18.5, vape exposed litter sizes were reduced and some embryos exhibited growth restriction compared to air exposed controls. Fetal lungs were collected for histology and whole transcriptome sequencing. Maternally nicotine vaped embryos exhibited histological and transcriptional changes consistent with impaired distal lung development. Embryonic lung gene expression changes mimicked transcriptional changes observed in adult mouse lungs exposed to cigarette smoke, suggesting that the developmental defects may be due to direct nicotine exposure. Fetal skeletons were analyzed for craniofacial and long bone lengths. Nicotine directly binds and inhibits the Kcnj2 potassium channel which is important for bone development. The length of the maxilla, palatal shelves, humerus, and femur were reduced in vaped embryos, which was further exacerbated by loss of one copy of the Kcnj2 gene. Nicotine vapor exposed Kcnj2KO/+ embryos also had significantly lower birth weights than unexposed animals of either genotype. Kcnj2 mutants had severely defective lungs with and without vape exposure, suggesting that potassium channels may be broadly involved in mediating the detrimental developmental effects of nicotine vaping. These data indicate that intrauterine nicotine exposure disrupts fetal lung and skeletal development likely through inhibition of Kcnj2.  more » « less
Award ID(s):
1945916
PAR ID:
10499563
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Developmental Biology
Date Published:
Journal Name:
Developmental Biology
Volume:
501
Issue:
C
ISSN:
0012-1606
Page Range / eLocation ID:
111 to 123
Subject(s) / Keyword(s):
Vaping e-cigarette, Nicotine Kcnj2 Kir2.1 Craniofacial Lung Skeletal Development
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Approximately 7% of pregnant women in the United States use electronic-cigarette (e-cig) devices during pregnancy. There is, however, no scientific evidence to support e-cig use as being ‘safe’ during pregnancy. Little is known about the effects of fetal exposures to e-cig aerosols on lung alveologenesis. In the present study, we tested the hypothesis that in utero exposure to e-cig aerosol impairs lung alveologenesis and pulmonary function in neonates. Pregnant BALB/c mice were exposed 2 h a day for 20 consecutive days during gestation to either filtered air or cinnamon-flavored e-cig aerosol (36 mg/mL of nicotine). Lung tissue was collected in offspring during lung alveologenesis on postnatal day (PND) 5 and PND11. Lung function was measured at PND11. Exposure to e-cig aerosol in utero led to a significant decrease in body weights at birth which was sustained through PND5. At PND5, in utero e-cig exposures dysregulated genes related to Wnt signaling and epigenetic modifications in both females (~ 120 genes) and males (40 genes). These alterations were accompanied by reduced lung fibrillar collagen content at PND5—a time point when collagen content is close to its peak to support alveoli formation. In utero exposure to e-cig aerosol also increased the Newtonian resistance of offspring at PND11, suggesting a narrowing of the conducting airways. At PND11, in females, transcriptomic dysregulation associated with epigenetic alterations was sustained (17 genes), while WNT signaling dysregulation was largely resolved (10 genes). In males, at PND11, the expression of only 4 genes associated with epigenetics was dysregulated, while 16 Wnt related-genes were altered. These data demonstrate that in utero exposures to cinnamon-flavored e-cig aerosols alter lung structure and function and induce sex-specific molecular signatures during lung alveologenesis in neonatal mice. This may reflect epigenetic programming affecting lung disease development later in life. 
    more » « less
  2. Jeyaseelan, Samithamby (Ed.)
    Introduction E-cigarette (EC) and vaping use continue to remain popular amongst teenage and young adult populations, despite several reports of vaping associated lung injury. One of the first compounds that EC aerosols comes into contact within the lungs during a deep inhalation is pulmonary surfactant. Impairment of surfactant’s critical surface tension reducing activity can contribute to lung dysfunction. Currently, information on how EC aerosols impacts pulmonary surfactant remains limited. We hypothesized that exposure to EC aerosol impairs the surface tension reducing ability of surfactant. Methods Bovine Lipid Extract Surfactant (BLES) was used as a model surfactant in a direct exposure syringe system. BLES (2ml) was placed in a syringe (30ml) attached to an EC. The generated aerosol was drawn into the syringe and then expelled, repeated 30 times. Biophysical analysis after exposure was completed using a constrained drop surfactometer (CDS). Results Minimum surface tensions increased significantly after exposure to the EC aerosol across 20 compression/expansion cycles. Mixing of non-aerosolized e-liquid did not result in significant changes. Variation in device used, addition of nicotine, or temperature of the aerosol had no additional effect. Two e-liquid flavours, menthol and red wedding, had further detrimental effects, resulting in significantly higher surface tension than the vehicle exposed BLES. Menthol exposed BLES has the highest minimum surface tensions across all 20 compression/expansion cycles. Alteration of surfactant properties through interaction with the produced aerosol was observed with a basic e-liquid vehicle, however additional compounds produced by added flavourings appeared to be able to increase inhibition. Conclusion EC aerosols alter surfactant function through increases in minimum surface tension. This impairment may contribute to lung dysfunction and susceptibility to further injury. 
    more » « less
  3. Electronic cigarettes (E-cigs) generate nicotine containing aerosols for inhalation and have emerged as a popular tobacco product among adolescents and young adults, yet little is known about their health effects due to their relatively recent introduction. Few studies have assessed the long-term effects of inhaling E-cigarette smoke or vapor. Here, we show that two months of E-cigarette exposure causes suppression of bone marrow hematopoietic stem and progenitor cells (HSPCs). Specifically, the common myeloid progenitors and granulocyte-macrophage progenitors were decreased in E-cig exposed animals compared to air exposed mice. Competitive reconstitution in bone marrow transplants was not affected by two months of E-cig exposure. When air and E-cig exposed mice were challenged with an inflammatory stimulus using lipopolysaccharide (LPS), competitive fitness between the two groups was not significantly different. However, mice transplanted with bone marrow from E-cigarette plus LPS exposed mice had elevated monocytes in their peripheral blood at five months post-transplant indicating a myeloid bias similar to responses of aged hematopoietic stem cells (HSC) to an acute inflammatory challenge. We also investigated whether E-cigarette exposure enhances the selective advantage of hematopoietic cells with myeloid malignancy associated mutations. E-cigarette exposure for one month slightly increased JAK2V617F mutant cells in peripheral blood but did not have an impact on TET2−/− cells. Altogether, our findings reveal that chronic E-cigarette exposure for two months alters the bone marrow HSPC populations but does not affect HSC reconstitution in primary transplants. 
    more » « less
  4. Electronic cigarettes are frequently viewed as a safer alternative to conventional cigarettes; however, evidence to support this perspective has not materialized. Indeed, the current literature reports that electronic cigarette use is associated with both acute lung injury and subclinical dysfunction to the lung and vasculature that may result in pathology following chronic use. E-cigarettes can alter vascular dynamics, polarize innate immune populations towards a proinflammatory state, compromise barrier function in the pulmonary endothelium and epithelium, and promote pre-oncogenic phenomena. This review will summarize the variety of e-cigarette products available to users, discuss current challenges in e-cigarette study design, outline the range of pathologies occurring in cases of e-cigarette associated acute lung injury, highlight disease supporting tissue- and cellular-level changes resulting from e-cigarette exposure, and briefly examine how these changes may promote tumorigenesis. Continued research of the mechanisms by which e-cigarettes induce pathology benefit users and clinicians by resulting in increased regulation of vaping devices, informing treatments for emerging diseases e-cigarettes produce, and increasing public awareness to reduce e-cigarette use and the onset of preventable disease. 
    more » « less
  5. Abstract Thousands of people suffer from nausea with pregnancy each year. Nausea can be alleviated with cannabidiol (CBD), a primary component of cannabis that is widely available. However, it is unknown how fetal CBD exposure affects embryonic development and postnatal outcomes. CBD binds and activates receptors that are expressed in the fetal brain and are important for brain development, including serotonin receptors (5HT1A), voltage-gated potassium (Kv)7 receptors, and the transient potential vanilloid 1 receptor (TRPV1). Excessive activation of each of these receptors can disrupt neurodevelopment. Here, we test the hypothesis that fetal CBD exposure in mice alters offspring neurodevelopment and postnatal behavior. We administered 50 mg/kg CBD in sunflower oil or sunflower oil alone to pregnant mice from embryonic day 5 through birth. We show that fetal CBD exposure sensitizes adult male offspring to thermal pain through TRPV1. We show that fetal CBD exposure decreases problem-solving behaviors in female CBD-exposed offspring. We demonstrate that fetal CBD exposure increases the minimum current required to elicit action potentials and decreases the number of action potentials in female offspring layer 2/3 prefrontal cortex (PFC) pyramidal neurons. Fetal CBD exposure reduces the amplitude of glutamate uncaging-evoked excitatory post-synaptic currents, consistent with CBD-exposed female problem-solving behavior deficits. Combined, these data show that fetal CBD exposure disrupts neurodevelopment and postnatal behavior in a sex specific manner. 
    more » « less