The development and understanding of antifreezing hydrogels are crucial both in principle and practice for the design and delivery of new materials. The current antifreezing mechanisms in hydrogels are almost exclusively derived from their incorporation of antifreezing additives, rather than from the inherent properties of the polymers themselves. Moreover, developing a computational model for the independent yet interconnected double-network (DN) structures in hydrogels has proven to be an exceptionally difficult task. Here, we develop a multiscale simulation platform, integrating ‘random walk reactive polymerization’ (RWRP) with molecular dynamics (MD) simulations, to computationally construct a physically-chemically linked PVA/PHEAA DN hydrogels from monomers that mimic a radical polymerization and to investigate water structures, dynamics, and interactions confined in PVA/PHEAA hydrogels with various water contents and temperatures, aiming to uncover antifreezing mechanism at atomic levels. Collective simulation results indicate that the antifreezing property of PVA/PHEAA hydrogels arises from a combination of intrinsic, strong water-binding networks and crosslinkers and tightly crosslinked and interpenetrating double-network structures, both of which enhance polymer-water interactions for competitively inhibiting ice nucleation and growth. These computational findings provide atomic-level insights into the interplay between polymers and water molecules in hydrogels, which may determine their resistance to freezing.
- Award ID(s):
- 2311985
- PAR ID:
- 10499576
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Giant
- Volume:
- 16
- ISSN:
- 2666-5425
- Page Range / eLocation ID:
- 100203
- Subject(s) / Keyword(s):
- Hydrogel Antifreezing Water state Water-polymer interaction Molecular dynamics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Double-network (DN) hydrogels, consisting of two contrasting and interpenetrating polymer networks, are considered as perhaps the toughest soft-wet materials. Current knowledge of DN gels from synthesis methods to toughening mechanisms almost exclusively comes from chemically-linked DN hydrogels by experiments. Molecular modeling and simulations of inhomogeneous DN structure in hydrogels have proved to be extremely challenging. Herein, we developed a new multiscale simulation platform to computationally investigate the early fracture of physically-chemically linked agar/polyacrylamide (agar/PAM) DN hydrogels at a long timescale. A “random walk reactive polymerization” (RWRP) was developed to mimic a radical polymerization process, which enables to construct a physically-chemically linked agar/PAM DN hydrogel from monomers, while conventional and steered MD simulations were conducted to examine the structural-dependent energy dissipation and fracture behaviors at the relax and deformation states. Collective simulation results revealed that energy dissipation of agar/PAM hydrogels was attributed to a combination of the pulling out of agar chains from the DNs, the disruption of massive hydrogen bonds between and within DN structures, and the strong association of water molecules with both networks, thus explaining a different mechanical enhancement of agar/PAM hydrogels. This computational work provided atomic details of network structure, dynamics, solvation, and interactions of a hybrid DN hydrogel, and a different structural-dependent energy dissipation mode and fracture behavior of a hybrid DN hydrogel, which help to design tough hydrogels with new network structures and efficient energy dissipation modes. Additionally, the RWRP algorithm can be generally applied to construct the radical polymerization-produced hydrogels, elastomers, and polymers.
-
Abstract Conventional design wisdom prevents both bulk and interfacial toughness to be presented in the same hydrogel, because the bulk properties of hydrogels are usually different from the interfacial properties of the same hydrogels on solid surfaces. Here, a fully‐physically‐linked agar (the first network)/poly(
N ‐hydroxyethyl acrylamide) (pHEAA, the second network), where both networks are physically crosslinked via hydrogen bonds, is designed and synthesized. Bulk agar/pHEAA hydrogels exhibit high mechanical properties (2.6 MPa tensile stress, 8.0 tensile strain, 8000 J m−2tearing energy, 1.62 MJ m−3energy dissipation), high self‐recovery without any external stimuli (62%/30% toughness/stiffness recovery), and self‐healing property. More impressively, without any surface modification, agar/pHEAA hydrogels can be easily and physically anchored onto different nonporous solid substrates of glass, titanium, aluminum, and ceramics to produce superadhesive hydrogel–solid interfaces (i.e., high interfacial toughness of 2000–7000 J m−2). Comparison of as‐prepared and swollen gels in water and hydrogen‐bond‐breaking solvents reveals that strong bulk toughness provides a structural basis for strong interfacial toughness, and both high toughness mainly stem from cooperative hydrogen bonds between and within two networks and between two networks and solid substrates. This work demonstrates a new gel system to achieve superhigh bulk and interfacial toughness on nonporous solid surfaces. -
Abstract Water swollen polymer networks are attractive for applications ranging from tissue regeneration to water purification. For water purification, charged polymers provide excellent ion separation properties. However, many ion exchange membranes (IEMs) are brittle, necessitating the use of thick support materials that ultimately decrease throughput. To this end, novel double network hydrogels (DNHs) with variable water content are prepared and characterized in terms of mechanical and ion transport properties to evaluate their potential utility as tough membrane materials. The first network contains fixed anionic charges, while the other is comprised of a copolymer with varied ratios of hydrophobic ethyl acrylate (EA) and hydrophilic dimethyl acrylamide (DMA) repeat units. Characterization of freestanding DNH films reveals a reduction in water content from 88 to 53 wt% and a simultaneous increase in ultimate stress and strain by ~3.5× and ~4.5×, respectively, for 95%/5% EA/DMA, relative to 100% DMA. Fundamental salt transport properties relevant to water purification, including permeability, solubility, and diffusivity, are measured and systematically compared with conventional membrane materials to inform the development of DNHs for membrane applications. The ability to simultaneously reduce water content and increase mechanical integrity highlights the potential of DNHs as a synthetic platform for future membrane applications.
-
Abstract Hydrogels consist of hydrophilic polymer networks dispersed in water. Many applications of hydrogels rely on their unique combination of solid‐like mechanical behavior and water‐like transport properties. If the temperature is lowered below 0 °C, however, hydrogels freeze and become rigid, brittle, and non‐conductive. Here, a general class of hydrogels that do not freeze at temperatures far below 0 °C, while retaining high stretchability and fracture toughness, is demonstrated. These hydrogels are synthesized by adding a suitable amount of an ionic compound to the hydrogel. The present study focuses on tough polyacrylamide‐alginate double network hydrogels equilibrated with aqueous solutions of calcium chloride. The resulting hydrogels can be cooled to temperatures as low as −57 °C without freezing. In this temperature range, the hydrogels can still be stretched more than four times their initial length and have a fracture toughness of 5000 J m−2. It is anticipated that this new class of hydrogels will prove useful in developing new applications operating under a broad range of environmental and atmospheric conditions.