skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leibniz International Proceedings in Informatics (LIPIcs):32nd International Symposium on Algorithms and Computation (ISAAC 2021)
Visibility problems are fundamental to computational geometry, and many versions of geometric set cover where coverage is based on visibility have been considered. In most settings, points can see "infinitely far" so long as visibility is not "blocked" by some obstacle. In many applications, this may be an unreasonable assumption. In this paper, we consider a new model of visibility where no point can see any other point beyond a sight radius ρ. In particular, we consider this visibility model in the context of terrains. We show that the VC-dimension of limited visibility terrains is exactly 7. We give lower bound construction that shatters a set of 7 points, and we prove that shattering 8 points is not possible.  more » « less
Award ID(s):
1733874
PAR ID:
10499745
Author(s) / Creator(s):
;
Editor(s):
Ahn, Hee-Kap; Sadakane, Kunihiko
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Subject(s) / Keyword(s):
VC-dimension Terrain Guarding Limited Visibility Theory of computation → Computational geometry
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cabello, Sergio; Chen, Danny Z. (Ed.)
    In this paper, we consider the Visibility Graph Recognition and Reconstruction problems in the context of terrains. Here, we are given a graph G with labeled vertices v₀, v₁, …, v_{n-1} such that the labeling corresponds with a Hamiltonian path H. G also may contain other edges. We are interested in determining if there is a terrain T with vertices p₀, p₁, …, p_{n-1} such that G is the visibility graph of T and the boundary of T corresponds with H. G is said to be persistent if and only if it satisfies the so-called X-property and Bar-property. It is known that every "pseudo-terrain" has a persistent visibility graph and that every persistent graph is the visibility graph for some pseudo-terrain. The connection is not as clear for (geometric) terrains. It is known that the visibility graph of any terrain T is persistent, but it has been unclear whether every persistent graph G has a terrain T such that G is the visibility graph of T. There actually have been several papers that claim this to be the case (although no formal proof has ever been published), and recent works made steps towards building a terrain reconstruction algorithm for any persistent graph. In this paper, we show that there exists a persistent graph G that is not the visibility graph for any terrain T. This means persistence is not enough by itself to characterize the visibility graphs of terrains, and implies that pseudo-terrains are not stretchable. 
    more » « less
  2. We study the problem of covering barrier points by mobile sensors. Each sensor is represented by a point in the plane with the same covering range [Formula: see text] so that any point within distance [Formula: see text] from the sensor can be covered by the sensor. Given a set [Formula: see text] of [Formula: see text] points (called “barrier points”) and a set [Formula: see text] of [Formula: see text] points (representing the “sensors”) in the plane, the problem is to move the sensors so that each barrier point is covered by at least one sensor and the maximum movement of all sensors is minimized. The problem is NP-hard. In this paper, we consider two line-constrained variations of the problem and present efficient algorithms that improve the previous work. In the first problem, all sensors are given on a line [Formula: see text] and are required to move on [Formula: see text] only while the barrier points can be anywhere in the plane. We propose an [Formula: see text] time algorithm for the problem. We also consider the weighted case where each sensor has a weight; we give an [Formula: see text] time algorithm for this case. In the second problem, all barrier points are on [Formula: see text] while all sensors are in the plane but are required to move onto [Formula: see text] to cover all barrier points. We also solve the weighted case in [Formula: see text] time. 
    more » « less
  3. null (Ed.)
    Many methods in learning from demonstration assume that the demonstrator has knowledge of the full environment. However, in many scenarios, a demonstrator only sees part of the environment and they continuously replan as they gather information. To plan new paths or to reconstruct the environment, we must consider the visibility constraints and replanning process of the demonstrator, which, to our knowledge, has not been done in previous work. We consider the problem of inferring obstacle configurations in a 2D environment from demonstrated paths for a point robot that is capable of seeing in any direction but not through obstacles. Given a set of survey points, which describe where the demonstrator obtains new information, and a candidate path, we con-struct a Constraint Satisfaction Problem (CSP) on a cell decomposition of the environment. We parameterize a set of obstacles corresponding to an assignment from the CSP and sample from the set to find valid environments. We show that there is a probabilistically-complete, yet not entirely tractable, algorithm that can guarantee novel paths in the space are unsafe or possibly safe. We also present an incomplete, but empirically-successful, heuristic-guided algorithm that we apply in our experiments to 1) planning novel paths and 2) recovering a probabilistic representation of the environment. 
    more » « less
  4. Czumaj, Artur; Dawar, Anuj; Merelli, Emanuela (Ed.)
    Consider a set P ⊆ ℝ^d of n points, and a convex body C provided via a separation oracle. The task at hand is to decide for each point of P if it is in C using the fewest number of oracle queries. We show that one can solve this problem in two and three dimensions using O(⬡_P log n) queries, where ⬡_P is the largest subset of points of P in convex position. In 2D, we provide an algorithm which efficiently generates these adaptive queries. Furthermore, we show that in two dimensions one can solve this problem using O(⊚(P,C) log² n) oracle queries, where ⊚(P,C) is a lower bound on the minimum number of queries that any algorithm for this specific instance requires. Finally, we consider other variations on the problem, such as using the fewest number of queries to decide if C contains all points of P. As an application of the above, we show that the discrete geometric median of a point set P in ℝ² can be computed in O(n log² n (log n log log n + ⬡(P))) expected time. 
    more » « less
  5. We collect from several sources some of the most important results on the forward and backward limits of points under real and complex rational functions, and in particular real and complex Newton maps, in one variable and we provide numerical evidence that the dynamics of Newton maps [Formula: see text] associated to real polynomial maps [Formula: see text] with no complex roots has a complexity comparable with that of complex Newton maps in one variable. In particular such a map [Formula: see text] has no wandering domain, almost every point under [Formula: see text] is asymptotic to a fixed point and there is some non-empty open set of points whose [Formula: see text]-limit equals the set of non-regular points of the Julia set of [Formula: see text]. The first two points were proved by B. Barna in the real one-dimensional case. 
    more » « less