Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield–related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.
more »
« less
Risks posed by invasive species to the provision of ecosystem services in Europe
Abstract Invasive species significantly impact biodiversity and ecosystem services, yet understanding these effects at large spatial scales remains a challenge. Our study addresses this gap by assessing the current and potential future risks posed by 94 invasive species to seven key ecosystem services in Europe. We demonstrate widespread potential impacts, particularly on outdoor recreation, habitat maintenance, crop provisioning, and soil and nitrogen retention. Exposure to invasive species was higher in areas with lower provision of ecosystem services, particularly for regulating and cultural services. Exposure was also high in areas where ecosystem contributions to crop provision and nitrogen retention were at their highest. Notably, regions vital for ecosystem services currently have low invasion suitability, but face an average 77% increase in potential invasion area. Here we show that, while high-value ecosystem service areas at the highest risk represent a small fraction of Europe (0-13%), they are disproportionally important for service conservation. Our study underscores the importance of monitoring and protecting these hotspots to align management strategies with international biodiversity targets, considering both invasion vulnerability and ecosystem service sustainability.
more »
« less
- Award ID(s):
- 1852060
- PAR ID:
- 10499843
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Seedling recruitment is an important mode of establishment utilized by many invasive plants. In widespread invasive plants, regional variation in the rates of seedling recruitment can contribute to differences in invasion intensity across regions. In this study, we examined regional variation in reproductive traits and seedling performance in a cosmopolitan invasive wetland grass,Phragmites australis. We tested whether nitrogen levels and regions with different histories and intensities of invasion would affect reproductive traits and seedling performance. We sampled invasivePhragmitesinflorescences from 34 populations across three regions in North America: The Northeast (old, most intense invasion), the Midwest (recent, intense invasion), and Southeast (recent, sparse invasion). We hypothesized that NortheastPhragmitespopulations would have the highest reproductive output and seedling performance, and that populations experiencing high nitrogen pollution would have higher reproductive output and seedling performance under high nitrogen conditions. We found that populations in the Northeast had the highest inflorescence mass, as expected. We also found that despite sparse distribution ofPhragmitesin the Southeast, populations from the Southeast displayed a high potential for sexual reproduction. However, increasing watershed-level nitrogen (kg/km2) decreased percent seed germination in Southeastern populations, suggesting that Southeastern populations are sensitive to rising nitrogen levels. While elevated nitrogen improved seedling performance through increased belowground growth in SoutheasternPhragmitesseedlings, elevated nitrogen decreased belowground growth in Midwestern seedlings. These results suggest that the southeastern region of North America may be primed to become an emergent invasion front ofPhragmites, warranting more research into the possible management ofPhragmitesspread in the region.more » « less
-
null (Ed.)Abstract The impacts of invasive species on biodiversity may be mitigated or exacerbated by abiotic environmental changes. Invasive plants can restructure soil fungal communities with important implications for native biodiversity and nutrient cycling, yet fungal responses to invasion may depend on numerous anthropogenic stressors. In this study, we experimentally invaded a long-term soil warming and simulated nitrogen deposition experiment with the widespread invasive plant Alliaria petiolata (garlic mustard) and tested the responses of soil fungal communities to invasion, abiotic factors, and their interaction. We focused on the phytotoxic garlic mustard because it suppresses native mycorrhizae across forests of North America. We found that invasion in combination with warming, but not under ambient conditions or elevated nitrogen, significantly reduced soil fungal biomass and ectomycorrhizal relative abundances and increased relative abundances of general soil saprotrophs and fungal genes encoding for hydrolytic enzymes. These results suggest that warming potentially exacerbates fungal responses to plant invasion. Soils collected from uninvaded and invaded plots across eight forests spanning a 4 °C temperature gradient further demonstrated that the magnitude of fungal responses to invasion was positively correlated with mean annual temperature. Our study is one of the first empirical tests to show that the impacts of invasion on fungal communities depends on additional anthropogenic pressures and were greater in concert with warming than under elevated nitrogen or ambient conditions.more » « less
-
Green stormwater infrastructure (GSI) is advocated for its potential to provide multiple ecosystem services, including stormwater runoff mitigation, wildlife habitat, and aesthetic value. However, the provision of these ecosystem services depends on both facility design and maintenance, which may vary based on whether GSI was installed to fulfill regulatory construction permit requirements or implemented voluntarily as part of urban greening initiatives. We evaluated 76 GSI facilities distributed across Baltimore, MD, USA, comprising 48 voluntary and 28 regulatory facilities. Each facility was scored on indicators related to the provision of stormwater, habitat, and aesthetic ecosystem services. Ecosystem service scores were highly variable, reflecting a wide range of quality and condition, but we found no significant differences between scores for regulatory and voluntary GSI. However, voluntary GSI scores tended to be higher in areas with greater socioeconomic status, while regulatory facilities showed an inverse relationship. Our findings indicate that GSI facilities can degrade quickly, and that official maintenance requirements for regulatory facilities do not guarantee upkeep. Regulatory requirements did have better outcomes in areas with lower socioeconomic status, though. Degraded GSI facilities may do more harm than good, becoming both unsightly and ineffective at providing intended stormwater or habitat benefits.more » « less
-
Abstract Climate change is negatively impacting ecosystems and their contributions to human well‐being, known as ecosystem services. Previous research has mainly focused on the direct effects of climate change on species and ecosystem services, leaving a gap in understanding the indirect impacts resulting from changes in species interactions within complex ecosystems. This knowledge gap is significant because the loss of a species in a food web can lead to additional species losses or “co‐extinctions,” particularly when the species most impacted by climate change are also the species that play critical roles in food web persistence or provide ecosystem services. Here, we present a framework to investigate the relationships among species vulnerability to climate change, their roles within the food web, their contributions to ecosystem services, and the overall persistence of these systems and services in the face of climate‐induced species losses. To do this, we assess the robustness of food webs and their associated ecosystem services to climate‐driven species extinctions in eight empirical rocky intertidal food webs. Across food webs, we find that highly connected species are not the most vulnerable to climate change. However, we find species that directly provide ecosystem services are more vulnerable to climate change and more connected than species that do not directly provide services, which results in ecosystem service provision collapsing before food webs. Overall, we find that food webs are more robust to climate change than the ecosystem services they provide and show that combining species roles in food webs and services with their vulnerability to climate change offer predictions about the impacts of co‐extinctions for future food web and ecosystem service persistence. However, these conclusions are limited by data availability and quality, underscoring the need for more comprehensive data collection on linking species roles in interaction networks and their vulnerabilities to climate change.more » « less
An official website of the United States government
