skip to main content


Title: Risks posed by invasive species to the provision of ecosystem services in Europe
Abstract

Invasive species significantly impact biodiversity and ecosystem services, yet understanding these effects at large spatial scales remains a challenge. Our study addresses this gap by assessing the current and potential future risks posed by 94 invasive species to seven key ecosystem services in Europe. We demonstrate widespread potential impacts, particularly on outdoor recreation, habitat maintenance, crop provisioning, and soil and nitrogen retention. Exposure to invasive species was higher in areas with lower provision of ecosystem services, particularly for regulating and cultural services. Exposure was also high in areas where ecosystem contributions to crop provision and nitrogen retention were at their highest. Notably, regions vital for ecosystem services currently have low invasion suitability, but face an average 77% increase in potential invasion area. Here we show that, while high-value ecosystem service areas at the highest risk represent a small fraction of Europe (0-13%), they are disproportionally important for service conservation. Our study underscores the importance of monitoring and protecting these hotspots to align management strategies with international biodiversity targets, considering both invasion vulnerability and ecosystem service sustainability.

 
more » « less
Award ID(s):
1852060
PAR ID:
10499843
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield–related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society. 
    more » « less
  2. null (Ed.)
    Abstract The impacts of invasive species on biodiversity may be mitigated or exacerbated by abiotic environmental changes. Invasive plants can restructure soil fungal communities with important implications for native biodiversity and nutrient cycling, yet fungal responses to invasion may depend on numerous anthropogenic stressors. In this study, we experimentally invaded a long-term soil warming and simulated nitrogen deposition experiment with the widespread invasive plant Alliaria petiolata (garlic mustard) and tested the responses of soil fungal communities to invasion, abiotic factors, and their interaction. We focused on the phytotoxic garlic mustard because it suppresses native mycorrhizae across forests of North America. We found that invasion in combination with warming, but not under ambient conditions or elevated nitrogen, significantly reduced soil fungal biomass and ectomycorrhizal relative abundances and increased relative abundances of general soil saprotrophs and fungal genes encoding for hydrolytic enzymes. These results suggest that warming potentially exacerbates fungal responses to plant invasion. Soils collected from uninvaded and invaded plots across eight forests spanning a 4 °C temperature gradient further demonstrated that the magnitude of fungal responses to invasion was positively correlated with mean annual temperature. Our study is one of the first empirical tests to show that the impacts of invasion on fungal communities depends on additional anthropogenic pressures and were greater in concert with warming than under elevated nitrogen or ambient conditions. 
    more » « less
  3. Gaglio, Mattias (Ed.)

    Ecological theory on diversity suggests that agriculture requires sufficient biodiversity, ecological function, and critical ecosystem services to remain sustainable and resilient. As such, research related to the effect of ecosystem services and diversity on crop yields has increased significantly in the past decade. One such study by Dainese and colleagues that presented a global synthesis of a compiled database of 1,475 crop experiments related to pollination and pest control ecosystem services and crop yields quickly garnered attention in the literature with more than 540 citations since its publication in 2019. Given the strong influence of this study on the research on diversity and agricultural production, we conduct a reanalysis on the publicly available dataset from the global synthesis study to test the robustness of findings to modeling approach and assumptions. In our reanalysis we apply ordinary least squares regression methods rather than Bayesian path analysis to the same data to examine the robustness of observed field-scale landscape diversity-ecosystem services-crop yield relationships. The result of our reanalysis supports the findings of Dainese and colleagues, illustrating the robustness of findings that suggest that increasing landscape simplicity is associated with lower rates of pollination and pest control ecosystem service provisioning and lower crop yields. However, our analyses also suggest that provisioning of pollination and pest control services account for only a small fraction of the total effect of landscape simplicity on crop yields. Furthermore, we find that management and soil health may mediate the effects of landscape simplicity on ecosystem services and crop yields. While our results complement previous findings for landscape simplicity and ecosystem services, they also indicate that above and below ground ecosystem services are not mutually exclusive but concurrently contribute to support crop production in agriculture.

     
    more » « less
  4. Agricultural landscapes can be managed to protect biodiversity and maintain ecosystem services. One approach to achieve this is to restore native perennial vegetation within croplands. Where rowcrops have displaced prairie, as in the US Midwest, restoration of native perennial vegetation can align with crops in so called “prairie strips.” We tested the effect of prairie strips in addition to other management practices on a variety of taxa and on a suite of ecosystem services. To do so, we worked within a 33-year-old experiment that included treatments that varied methods of agricultural management across a gradient of land use intensity. In the two lowest intensity crop management treatments, we introduced prairie strips that occupied 5% of crop area. We addressed three questions: (1) What are the effects of newly established prairie strips on the spillover of biodiversity and ecosystem services into cropland? (2) How does time since prairie strip establishment affect biodiversity and ecosystem services? (3) What are the tradeoffs and synergies among biodiversity conservation, non-provisioning ecosystem services, and provisioning ecosystem services (crop yield) across a land use intensity gradient (which includes prairie strips)? Within prairie strip treatments, where sampling effort occurred within and at increasing distance from strips, dung beetle abundance, spider abundance and richness, active carbon, decomposition, and pollination decreased with distance from prairie strips, and this effect increased between the first and second year. Across the entire land use intensity gradient, treatments with prairie strips and reduced chemical inputs had higher butterfly abundance, spider abundance, and pollination services. In addition, soil organic carbon, butterfly richness, and spider richness increased with a decrease in land use intensity. Crop yield in one treatment with prairie strips was equal to that of the highest intensity management, even while including the area taken out of production. We found no effects of strips on ant biodiversity and greenhouse gas emissions (N 2 O and CH 4 ). Our results show that, even in early establishment, prairie strips and lower land use intensity can contribute to the conservation of biodiversity and ecosystem services without a disproportionate loss of crop yield. 
    more » « less
  5. Abstract Roadsides can be vectors for tree invasion within rangelands by bisecting landscapes and facilitating propagule spread to interior habitat. Current invasive tree management in North America’s Great Plains focuses on reducing on-site (i.e., interior habitat) vulnerability through on-site prevention and eradication, but invasive tree management of surrounding areas known to serve as invasion vectors, such as roadsides and public rights-of-ways, is sporadic. We surveyed roadsides for invasive tree propagule sources in a central Great Plains grassland landscape to determine how much of the surrounding landscape is potentially vulnerable to roadside invasion, and by which species, and thereby provide insights into the locations and forms of future landcover change. Invasive tree species were widespread in roadsides. Given modest seed dispersal distances of 100–200 m, our results show that roadsides have potential to serve as major sources of rangeland exposure to tree invasion, compromising up to 44% of rangelands in the study area. Under these dispersal distances, funds spent removing trees on rangeland properties may have little impact on the landscape’s overall vulnerability, due to exposure driven by roadside propagule sources. A key implication from this study is that roadsides, while often neglected from management, represent an important component of integrated management strategies for reducing rangeland vulnerability to tree invasion. 
    more » « less