Abstract The recognition and delineation of cryptic species remains a perplexing problem in systematics, evolution, and species delimitation. Once recognized as such, cryptic species complexes provide fertile ground for studying genetic divergence within the context of phenotypic and ecological divergence (or lack thereof). Herein we document the discovery of a new cryptic species of trapdoor spider,Promyrmekiaphila korematsuisp. nov. Using subgenomic data obtained via target enrichment, we document the phylogeography of the California endemic genusPromyrmekiaphilaand its constituent species, which also includesP. clathrataandP. winnemem. Based on these data we show a pattern of strong geographic structuring among populations but cannot entirely discount recent gene flow among populations that are parapatric, particularly for deeply diverged lineages withinP. clathrata. The genetic data, in addition to revealing a new undescribed species, also allude to a pattern of potential phenotypic differentiation where species likely come into close contact. Alternatively, phenotypic cohesion among genetically divergentP. clathratalineages suggests that some level of gene flow is ongoing or occurred in the recent past. Despite considerable field collection efforts over many years, additional sampling in potential zones of contact for both species and lineages is needed to completely resolve the dynamics of divergence inPromyrmekiaphilaat the population–species interface.
more »
« less
The population genetics of speciation by cascade reinforcement
Abstract Species interactions drive diverse evolutionary outcomes. Speciation by cascade reinforcement represents one example of how species interactions can contribute to the proliferation of species. This process occurs when the divergence of mating traits in response to selection against interspecific hybridization incidentally leads to reproductive isolation among populations of the same species. Here, we investigated the population genetic outcomes of cascade reinforcement in North American chorus frogs (Hylidae:Pseudacris). Specifically, we estimated the frequency of hybridization among three taxa, assessed genetic structure within the focal species,P.feriarum, and ascertained the directionality of gene flow withinP.feriarumacross replicated contact zones via coalescent modeling. Through field observations and preliminary experimental crosses, we assessed whether hybridization is possible under natural and laboratory conditions. We found that hybridization occurs amongP.feriarumand two conspecifics at a low rate in multiple contact zones, and that gene flow within the former species is unidirectional from allopatry into sympatry with these other species in three of four contact zones studied. We found evidence of substantial genetic structuring withinP.feriarumincluding a divergent western allopatric cluster, a behaviorally‐distinct sympatric South Carolina cluster, and several genetically‐overlapping clusters from the remainder of the distribution. Furthermore, we found sub‐structuring between reinforced and nonreinforced populations in the two most intensely‐sampled contact zones. Our literature review indicated thatP.feriarumhybridizes with at least five heterospecifics at the periphery of its range providing a mechanism for further intraspecific diversification. This work strengthens the evidence for cascade reinforcement in this clade, revealing the geographic and genetic landscape upon which this process can contribute to the proliferation of species.
more »
« less
- Award ID(s):
- 2121058
- PAR ID:
- 10499900
- Publisher / Repository:
- Ecology and Evolution
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 13
- Issue:
- 2
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Divergence is often ephemeral, and populations that diverge in response to regional topographic and climatic factors may not remain reproductively isolated when they come into secondary contact. We investigated the geographical structure and evolutionary history of population divergence withinSceloporus occidentalis(western fence lizard), a habitat generalist with a broad distribution that spans the major biogeographical regions of Western North America. We used double digest RAD sequencing to infer population structure, phylogeny and demography. Population genetic structure is hierarchical and geographically structured with evidence for gene flow between biogeographical regions. Consistent with the isolation–expansion model of divergence during Quaternary glacial–interglacial cycles, gene flow and secondary contact are supported as important processes explaining the demographic histories of populations. Although populations may have diverged as they spread northward in a ring‐like manner around the Sierra Nevada and southern Cascade Ranges, there is strong evidence for gene flow among populations at the northern terminus of the ring. We propose the concept of an “ephemeral ring species” and contrastS. occidentaliswith the classic North American ring species,Ensatina eschscholtzii. Contrary to expectations of lower genetic diversity at northern latitudes following post‐Quaternary‐glaciation expansion, the ephemeral nature of divergence inS. occidentalishas produced centres of high genetic diversity for different reasons in the south (long‐term stability) vs. the north (secondary contact).more » « less
-
Abstract Replicability of divergence after contact is a poorly characterized process, particularly in the contexts of phylogeography and postglacial range dynamics within species. Using contact zones located at the leading‐, mid‐ and rear‐edges of a species' range, we examined variation in outcomes to contact between divergent lineages ofCampanula americana. We investigated whether contact zones vary in quantity and directionality of gene flow, how phylogeographic structure differs between contact zones, and how historic range dynamics may affect outcomes to contact. We found that all contact zones formed at similar times via primary contact yet detected significant admixture in only the rear‐edge (RE) contact zone. In the northern leading‐edge contact zone and the mid‐range Virginia contact zone, gene flow was minimal and asymmetric. In the southern RE contact zone, gene flow was strong and symmetric. Asymmetric admixture in the leading‐edge and Virginia contact zones matches the directionality of a known cosmopolitan cytonuclear incompatibility between lineages ofC. americana. Our results emphasize the dependence of speciation processes on phylogeographic structure, evolutionary history and range dynamics.more » « less
-
Abstract Urbanisation is occurring globally, leading to dramatic environmental changes that are altering the ecology and evolution of species. In particular, the expansion of human infrastructure and the loss and fragmentation of natural habitats in cities is predicted to increase genetic drift and reduce gene flow by reducing the size and connectivity of populations. Alternatively, the ‘urban facilitation model’ suggests that some species will have greater gene flow into and within cities leading to higher diversity and lower differentiation in urban populations. These alternative hypotheses have not been contrasted across multiple cities. Here, we used the genomic data from the GLobal Urban Evolution project (GLUE), to study the effects of urbanisation on non‐adaptive evolutionary processes of white clover (Trifolium repens) at a global scale. We found that white clover populations presented high genetic diversity and no evidence of reducedNelinked to urbanisation. On the contrary, we found that urban populations were less likely to experience a recent decrease in effective population size than rural ones. In addition, we found little genetic structure among populations both globally and between urban and rural populations, which showed extensive gene flow between habitats. Interestingly, white clover displayed overall higher gene flow within urban areas than within rural habitats. Our study provides the largest comprehensive test of the demographic effects of urbanisation. Our results contrast with the common perception that heavily altered and fragmented urban environments will reduce the effective population size and genetic diversity of populations and contribute to their isolation.more » « less
-
Summary The tree of life is riddled with reticulate evolutionary histories, and some clades, such as the eastern standingPhlox, appear to be hotspots of hybridization. In this group, there are two cases of reinforcement and nine hypothesized hybrid species. Given their historical importance in our understanding of plant speciation, the relationships between these taxa and the role of hybridization in their diversification require genomic validation.Using phylogenomic analyses, we resolve the evolutionary relationships of the eastern standingPhloxand evaluate hypotheses about whether and how hybridization and gene flow played a role in their diversification.Our results provide novel resolution of the phylogenetic relationships in this group, including paraphyly across some taxa. We identify gene flow during one case of reinforcement and find genomic support for a hybrid lineage underlying one of the five hypothesized homoploid hybrid speciation events. Additionally, we estimate the ancestries of four allotetraploid hybrid species.Our results are consistent with hybridization contributing to diverse evolutionary outcomes within this group; although, not as extensively as previously hypothesized. This study demonstrates the importance of phylogenomics in evaluating hypothesized evolutionary histories of non‐model systems and adds to the growing support of interspecific genetic exchange in the generation of biodiversity.more » « less