skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum interference in superposed lattices
Charge transport in solids at low temperature reveals a material’s mesoscopic properties and structure. Under a magnetic field, Shubnikov–de Haas (SdH) oscillations inform complex quantum transport phenomena that are not limited by the ground state characteristics and have facilitated extensive explorations of quantum and topological interest in two- and three-dimensional materials. Here, in elemental metal Cr with two incommensurately superposed lattices of ions and a spin-density-wave ground state, we reveal that the phases of several low-frequency SdH oscillations in σ xx   ( ρ xx ) and σ yy   ( ρ yy ) are no longer identical but opposite. These relationships contrast with the SdH oscillations from normal cyclotron orbits that maintain identical phases between σ xx   ( ρ xx ) and σ yy   ( ρ yy )  . We trace the origin of the low-frequency SdH oscillations to quantum interference effects arising from the incommensurate orbits of Cr’s superposed reciprocal lattices and explain the observed π -phase shift by the reconnection of anisotropic joint open and closed orbits.  more » « less
Award ID(s):
1945023
PAR ID:
10499916
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
the Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
7
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We combine synchrotron-based infrared absorption and Raman scattering spectroscopies with diamond anvil cell techniques and first-principles calculations to explore the properties of hafnia under compression. We find that pressure drives HfO 2 :7%Y from the mixed monoclinic ( P 2 1 / c ) + antipolar orthorhombic ( Pbca ) phase to pure antipolar orthorhombic ( Pbca ) phase at approximately 6.3 GPa. This transformation is irreversible, meaning that upon release, the material is kinetically trapped in the Pbca metastable state at 300 K. Compression also drives polar orthorhombic ( P c a 2 1 ) hafnia into the tetragonal ( P 4 2 / n m c ) phase, although the latter is not metastable upon release. These results are unified by an analysis of the energy landscape. The fact that pressure allows us to stabilize targeted metastable structures with less Y stabilizer is important to preserving the flat phonon band physics of pure HfO 2
    more » « less
  2. Abstract We generalize a magnetogram-matching Biot–Savart law (BSl) from planar to spherical geometry. For a given coronal current densityJ, this law determines the magnetic field B ˜ whose radial component vanishes at the surface. The superposition of B ˜ with a potential field defined by a given surface radial field,Br, provides the entire configuration whereBrremains unchanged by the currents. Using this approach, we (1) upgrade our regularized BSls for constructing coronal magnetic flux ropes (MFRs) and (2) propose a new method for decomposing a measured photospheric magnetic field as B = B pot + B T + B S ˜ , where the potential,Bpot, toroidal,BT, and poloidal, B S ˜ , fields are determined byBr,Jr, and the surface divergence ofB–Bpot, respectively, all derived from magnetic data. OurBTis identical to the one in the alternative Gaussian decomposition by P. W. Schuck et al., whileBpotand B S ˜ are different from their poloidal fields B P < and B P > , which arepotentialin the infinitesimal proximity to the upper and lower side of the surface, respectively. In contrast, our B S ˜ has no such constraints and, asBpotandBT, refers to thesameupper side of the surface. In spite of these differences, for a continuousJdistribution across the surface,Bpotand B S ˜ are linear combinations of B P < and B P > . We demonstrate that, similar to the Gaussian method, our decomposition allows one to identify the footprints and projected surface-location of MFRs in the solar corona, as well as the direction and connectivity of their currents. 
    more » « less
  3. Abstract The polarization of the cosmic microwave background is rich in information but obscured by foreground emission from the Milky Way’s interstellar medium (ISM). To uncover relationships between the underlying turbulent ISM and the foreground power spectra, we simulated a suite of driven, magnetized, turbulent models of the ISM, varying the fluid properties via the sonic Mach number, M S , and magnetic (Alfvén) Mach number, M A . We measure the power spectra of density (ρ), velocity (v), magnetic field (H), total projected intensity (T), parity-even polarization (E), and parity-odd polarization (B). We find that the slopes of all six quantities increase with M S . Most increase with M A , while the magnetic field spectrum steepens with M A . By comparing spectral slopes ofEandBto those measured by Planck, we infer typical values of M S and M A for the ISM. As the fluid velocity increases, M S > 4 , the ratio of BB power to EE power increases to approach a constant value near the Planck-observed value of ∼0.5, regardless of the magnetic field strength. We also examine correlation coefficients between projected quantities, and find thatrTE≈ 0.3, in agreement with Planck, for appropriate combinations of M S and M A . Finally, we consider parity-violating correlationsrTBandrEB
    more » « less
  4. Abstract We compare 500 pc scale, resolved observations of ionized and molecular gas for thez∼ 0.02 starbursting disk galaxy IRAS08339+6517, using measurements from KCWI and NOEMA. We explore the relationship of the star-formation-driven ionized gas outflows with colocated galaxy properties. We find a roughly linear relationship between the outflow mass flux ( Σ ̇ out ) and star formation rate surface density (ΣSFR), Σ ̇ out Σ SFR 1.06 ± 0.10 , and a strong correlation between Σ ̇ out and the gas depletion time, such that Σ ̇ out t dep 1.1 ± 0.06 . Moreover, we find these outflows are so-calledbreakoutoutflows, according to the relationship between the gas fraction and disk kinematics. Assuming that ionized outflow mass scales with total outflow mass, our observations suggest that the regions of highest ΣSFRin IRAS08 are removing more gas via the outflow than through the conversion of gas into stars. Our results are consistent with a picture in which the outflow limits the ability of a region of a disk to maintain short depletion times. Our results underline the need for resolved observations of outflows in more galaxies. 
    more » « less
  5. Abstract We present a new suite of numerical simulations of the star-forming interstellar medium (ISM) in galactic disks using the TIGRESS-NCR framework. Distinctive aspects of our simulation suite are (1) sophisticated and comprehensive numerical treatments of essential physical processes including magnetohydrodynamics, self-gravity, and galactic differential rotation, as well as photochemistry, cooling, and heating coupled with direct ray-tracing UV radiation transfer and resolved supernova feedback and (2) wide parameter coverage including the variation in metallicity over Z Z / Z 0.1 - 3 , gas surface density Σgas∼ 5–150Mpc−2, and stellar surface density Σstar∼ 1–50Mpc−2. The range of emergent star formation rate surface density is ΣSFR∼ 10−4–0.5Mkpc−2yr−1, and ISM total midplane pressure isPtot/kB= 103–106cm−3K, withPtotequal to the ISM weight W . For given Σgasand Σstar, we find Σ SFR Z 0.3 . We provide an interpretation based on the pressure-regulated feedback-modulated (PRFM) star formation theory. The total midplane pressure consists of thermal, turbulent, and magnetic stresses. We characterize feedback modulation in terms of the yield ϒ, defined as the ratio of each stress to ΣSFR. The thermal feedback yield varies sensitively with both weight and metallicity as ϒ th W 0.46 Z 0.53 , while the combined turbulent and magnetic feedback yield shows weaker dependence ϒ turb + mag W 0.22 Z 0.18 . The reduction in ΣSFRat low metallicity is due mainly to enhanced thermal feedback yield, resulting from reduced attenuation of UV radiation. With the metallicity-dependent calibrations we provide, PRFM theory can be used for a new subgrid star formation prescription in cosmological simulations where the ISM is unresolved. 
    more » « less