skip to main content


Title: Challenges and supports for secondary science and mathematics teacher retention
Abstract

More research related to effective ways to support and retain teachers in the teaching profession is necessary as the need for science and mathematics teachers continues to grow. Understanding how teachers perceive challenges and experience support early in their career can contribute to building environments which foster teacher retention. This mixed‐method study explored the influences on the self‐efficacy and career satisfaction of a group of 21 early‐career (2–6 years of classroom experience) secondary science and mathematics teachers who participated in a traditional university preparation program and scholarship program to prepare them for teaching in high‐need school districts. Using data from an efficacy survey and semistructured interviews, this study measured changes in teacher efficacy and described teacher leadership experiences, perceived teaching challenges, and valued supports. Results found no change in teachers' self‐efficacy scores although mean outcome expectancy scores decreased. Teachers' identification as a teacher leader was correlated with science or mathematics teaching self‐efficacy. Qualitative coding of the interviews revealed ways in which assessments, workload, school structures and polices, administration, students, and teacher community either contributed to teachers reported difficulties or supported them as early‐career teachers. The discussion offers suggestions for ways to increase secondary science and mathematics teachers' job satisfaction.

 
more » « less
NSF-PAR ID:
10499964
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
School Science and Mathematics
ISSN:
0036-6803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The expansion of K-12 computer science (CS) has driven a dramatic need for educators who are trained in CS content and pedagogy [1]. This poster describes our effort to train teacher candidates (i.e., pre-service teachers who are students seeking degrees within a College of Education), who are specializing in secondary mathematics education, to be future CS educators. We specifically describe our collaboration to provide a blended preparatory six-week training for the ETS CS Praxis exam (5652), assisting our pre-service students in satisfying the CS certification requirements in our state before they graduate and begin their professional teaching career. Given the unique challenges of pre-service CS teacher preparation [2], blended models, which combine both in-person and online instruction, are an effective approach to building a pre-service program. Within our pre-service CS program, students first complete a two-course pathway that prepares them in AP CSP content and pedagogy experiences, including observations in local AP CSP classrooms [3]. After completing the two courses, our students participate in the blended version of the WeTeach_CS Praxis preparation course to achieve certification. The in-person support provided by the blended model contributed significantly to certification success in this project. With a cut-score of 149 for the Praxis exam, all 11 of our pre-service students who completed the course received a passing score (including one student with a perfect score of 200, and another student with a 195); the average score for our pre-service students was 175. An additional 11 in-service teachers, with diverse backgrounds in CS content knowledge, also participated in the blended Praxis preparation course, with an average score of 166. Given the unique challenges of pre-service CS teacher preparation, university pre-service CS teacher programs should look to innovative models of teacher support developed by in-service programs to make substantial gains in CS teacher certification. Incorporating an asynchronous online course that allows teachers with a wide range of prior experience in CS to learn at their own pace with in-person coursework and support appears to be a viable model for assisting non-CS major teacher candidates in achieving a CS certification. With the blended model, even teachers with no background knowledge in CS were successful. Within our pre-service CS program, students first complete a two-course pathway that prepares them in AP CSP content and pedagogy experiences, including observations in local AP CSP classrooms [3]. After completing the two courses, our students participate in the blended version of the WeTeach_CS Praxis preparation course to achieve certification. The in-person support provided by the blended model contributed significantly to certification success in this project. With a cut-score of 149 for the Praxis exam, all 11 of our pre-service students who completed the course received a passing score (including one student with a perfect score of 200, and another student with a 195); the average score for our pre-service students was 175. An additional 11 in-service teachers, with diverse backgrounds in CS content knowledge, also participated in the blended Praxis preparation course, with an average score of 166. Incorporating an asynchronous online course that allows teachers with a wide range of prior experience in CS to learn at their own pace with in-person coursework and support appears to be a viable model for assisting non-CS major teacher candidates in achieving a CS certification. With the blended model, even teachers with no background knowledge in CS were successful. 
    more » « less
  2. Declining enrollments in teacher preparation programs across the United States signal a critical need for institutions of higher education to consider innovative recruitment initiatives. This pilot study investigates a novel approach to recruiting undergraduates into a teacher preparation program. Nine participants, mostly first-year college students, engaged in a year-long experiential learning program. The program provided participants with an early teaching experience in a classroom-like setting by engaging them in the collaborative development, planning, and teaching of mathematics in a summer camp for high school students. Data were collected throughout the year on their: planned major, attitudes towards mathematics and mathematics education, mathematics teaching self-efficacy, and perceptions of the program. Results showed the program was successful at improving attitudes, increasing self-efficacy, and stimulating reflection on a potential career as a mathematics teacher. Participants also shared positive impressions of the experience. Implications for research and future practice are discussed. 
    more » « less
  3. Background/Context:

    Computer programming is rarely accessible to K–12 students, especially for those from culturally and linguistically diverse backgrounds. Middle school age is a transitioning time when adolescents are more likely to make long-term decisions regarding their academic choices and interests. Having access to productive and positive knowledge and experiences in computer programming can grant them opportunities to realize their abilities and potential in this field.

    Purpose/Focus of Study:

    This study focuses on the exploration of the kind of relationship that bilingual Latinx students developed with themselves and computer programming and mathematics (CPM) practices through their participation in a CPM after-school program, first as students and then as cofacilitators teaching CPM practices to other middle school peers.

    Setting:

    An after-school program, Advancing Out-of-School Learning in Mathematics and Engineering (AOLME), was held at two middle schools located in rural and urban areas in the Southwest. It was designed to support an inclusive cultural environment that nurtured students’ opportunities to learn CPM practices through the inclusion of languages (Spanish and English), tasks, and participants congruent to students in the program. Students learned how to represent, design, and program digital images and videos using a sequence of 2D arrays of hexadecimal numbers with Python on a Raspberry Pi computer. The six bilingual cofacilitators attended Levels 1 and 2 as students and were offered the opportunity to participate as cofacilitators in the next implementation of Level 1.

    Research Design:

    This longitudinal case study focused on analyzing the experiences and shifts (if any) of students who participated as cofacilitators in AOLME. Their narratives were analyzed collectively, and our analysis describes the experiences of the cofacilitators as a single case study (with embedded units) of what it means to be a bilingual cofacilitator in AOLME. Data included individual exit interviews of the six cofacilitators and their focus groups (30–45 minutes each), an adapted 20-item CPM attitude 5-point Likert scale, and self-report from each of them. Results from attitude scales revealed cofacilitators’ greater initial and posterior connections to CPM practices. The self-reports on CPM included two number lines (0–10) for before and after AOLME for students to self-assess their liking and knowledge of CPM. The numbers were used as interview prompts to converse with students about experiences. The interview data were analyzed qualitatively and coded through a contrast-comparative process regarding students’ description of themselves, their experiences in the program, and their perception of and relationship toward CPM practices.

    Findings:

    Findings indicated that students had continued/increased motivation and confidence in CPM as they engaged in a journey as cofacilitators, described through two thematic categories: (a) shifting views by personally connecting to CPM, and (b) affirming CPM practices through teaching. The shift in connecting to CPM practices evolved as students argued that they found a new way of learning mathematics, in that they used mathematics as a tool to create videos and images that they programmed by using Python while making sense of the process bilingually (Spanish and English). This mathematics was viewed by students as high level, which in turned helped students gain self-confidence in CPM practices. Additionally, students affirmed their knowledge and confidence in CPM practices by teaching them to others, a process in which they had to mediate beyond the understanding of CPM practices. They came up with new ways of explaining CPM practices bilingually to their peers. In this new role, cofacilitators considered the topic and language, and promoted a communal support among the peers they worked with.

    Conclusions/Recommendations:

    Bilingual middle school students can not only program, but also teach bilingually and embrace new roles with nurturing support. Schools can promote new student roles, which can yield new goals and identities. There is a great need to redesign the school mathematics curriculum as a discipline that teenagers can use and connect with by creating and finding things they care about. In this way, school mathematics can support a closer “fit” with students’ identification with the world of mathematics. Cofacilitators learned more about CPM practices by teaching them, extending beyond what was given to them, and constructing new goals that were in line with a sophisticated knowledge and shifts in the practice. Assigned responsibility in a new role can strengthen students’ self-image, agency, and ways of relating to mathematics.

     
    more » « less
  4. Abstract

    As the pandemic began to disrupt school systems in March 2020, teachers were expected to quickly modify their instructional approaches. We recruited science, technology, engineering, and mathematics teachers who were recipients of National Science Foundation scholarships based on their high‐quality academic record and commitment to working in high‐needs school districts to participate in a longitudinal survey study. Participants (n = 153) graduated from universities or colleges in the Mountain West or western region of the Midwest. Through a series of three surveys administered throughout 2020 to all participants and follow‐up focus group interviews with a subset (n = 42) in early 2021, we examined participants' perceptions and beliefs about the educational system's response to COVID‐19. Participants perceived that the continuation of instructional delivery was the highest priority and that their professional needs were the lowest priority. Most participants believed the actions taken by school districts and schools to be negative or neutral. Participants were categorized by years of experience (preservice 0, novice 1–3, early career 4–5, and master 6+) to compare their perceptions of success and intentions to continue teaching. Participants perceived that their level of success increased with years of professional experience prior to the pandemic, but all participants reported feeling less successful during the pandemic. Despite participants' negative beliefs about the school response and perceived low levels of success, they intended to remain in the classroom short‐term but not necessarily long term. We recommend that teacher educators and administrators (1) help teachers develop their personal knowledge and skills for use in the classroom, especially considering the national shortage of science (and STEM, broadly) teachers in high‐needs districts and (2) develop proactive plans for responding to unexpected crises on large scales, as well as those limited to a particular region.

     
    more » « less
  5. null (Ed.)
    Motivation: Recent efforts to expand K-12 computer science education highlight the great need for well-prepared computer science (CS) teachers. Teacher identity theory offers a particular conceptual lens for us to understand computer science teacher preparation and professional development. The emerging literature suggests that teacher identity is central to sustaining motivation, efficacy, job satisfaction, and commitment, and these attributes are crucial in determining teacher retention. While the benefits associated with a strong sense of teacher identity are great, teachers face unique challenges and tensions in developing their professional identity for teaching computer science. Objectives: This exploratory study attempts to operationalize computer science teacher identity through discussing the potential domains, proposing and testing a quantitative instrument for assessing computer science teachers’ professional identity. Method: We first discussed the potential domains of computer science teacher identity based on recent teacher identity literature and considerations on some unique challenges for computer science teachers. Then we proposed the computer science teacher identity scale, which was piloted through a national K-12 computer science teacher survey with 3,540 completed responses. The survey results were analyzed with a series of factor analyses to test the internal structure of the computer science teacher identity scale. Results: Our analyses reveal a four-factor solution for the computer science teacher identity scale, which is composed of CS teaching commitment, CS pedagogical confidence, confidence to engage students, and sense of community/belonging. There were significant differences among the teachers with different computer science teaching experiences. In general, teachers with more computer science teaching experience had higher computer science teacher identity scores on all four factors. Discussion: The four-factor model along with a large national dataset invites a deeper analysis of the data and can provide important benchmarks. Such an instrument can be used to explore developmental patterns in computer science teacher identity, and function as a pedagogical tool to provoke discussion and reflection among teachers about their professional development. This study may also contribute to understanding computer science teachers’ professional development needs and inform efforts to prepare, develop, and retain computer science teachers. 
    more » « less