skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing self-assembling kinetics with differentiable statistical physics models
Significance Engineering at the nanoscale is rich and complex: researchers have designed small-scale structures ranging from smiley faces to intricate sensors. However, designing specific dynamical features within these structures has proven to be significantly harder than designing the structures themselves. Biology, on the other hand, demonstrates fine-tuned kinetic control at nearly all scales: viruses that form too quickly are rarely infectious, and proper embryonic development depends on the relative rate of tissue growth. Clearly, kinetic features are designable and critical for biological function. We demonstrate a method to control kinetic features of complex systems and apply it to two classic self-assembly systems. Studying and optimizing for kinetic features, rather than static structures, opens the door to a different approach to materials design.  more » « less
Award ID(s):
2011754
PAR ID:
10499978
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
10
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work harnesses interpretable machine learning methods to address the challenging inverse design problem of origami-inspired systems. We established a work flow based on decision tree-random forest method to fit origami databases, containing both design features and functional performance, and to generate human-understandable decision rules for the inverse design of functional origami. First, the tree method is unique because it can handle complex interactions between categorical features and continuous features, allowing it to compare different origami patterns for a design. Second, this interpretable method can tackle multi-objective problems for designing functional origami with multiple and multi-physical performance targets. Finally, the method can extend existing shape-fitting algorithms for origami to consider non-geometrical performance. The proposed framework enables holistic inverse design of origami, considering both shape and function, to build novel reconfigurable structures for various applications such as metamaterials, deployable structures, soft robots, biomedical devices, and many more. 
    more » « less
  2. Abstract Topology optimization has been proved to be an efficient tool for structural design. In recent years, the focus of structural topology optimization has been shifting from single material continuum structures to multimaterial and multiscale structures. This paper aims at devising a numerical scheme for designing bionic structures by combining a two-stage parametric level set topology optimization with the conformal mapping method. At the first stage, the macro-structural topology and the effective material properties are optimized simultaneously. At the second stage, another structural topology optimization is carried out to identify the exact layout of the metamaterial at the mesoscale. The achieved structure and metamaterial designs are further synthesized to form a multiscale structure using conformal mapping, which mimics the bionic structures with “orderly chaos” features. In this research, a multi-control-point conformal mapping (MCM) based on Ricci flow is proposed. Compared with conventional conformal mapping with only four control points, the proposed MCM scheme can provide more flexibility and adaptivity in handling complex geometries. To make the effective mechanical properties of the metamaterials invariant after conformal mapping, a variable-thickness structure method is proposed. Three 2D numerical examples using MCM schemes are presented, and their results and performances are compared. The achieved multimaterial multiscale structure models are characterized by the “orderly chaos” features of bionic structures while possessing the desired performance. 
    more » « less
  3. Abstract Bridging functionalities in periodic mesoporous organosilicas (PMOs) enable new functionalities for a wide range of applications. Bridge cleavage is frequently observed during anneals required to form porous structures, yet the mechanism of these bridge cleavages has not been completely resolved. Here, these chemical transformations and their kinetic pathways on sub‐millisecond timescales induced by laser heating are revealed. By varying anneal times and temperatures, the transformation dynamics of bridge cleavage and structural transformations and their activation energies are determined. The structural relaxation time for individual reactions and their effective local heating time are determined and compared, and the results directly demonstrate the manipulation of different molecules through kinetic control of the sequence of reactions. By isolating and understanding the earliest stage of structural transformations, this study identifies the kinetic principles for new synthesis and post‐processing routes to control individual molecules and reactions in PMOs and other material systems with multi‐functionalities. 
    more » « less
  4. Abstract While the human body has many different examples of perfusable structures with complex geometries, biofabrication methods to replicate this complexity are still lacking. Specifically, the fabrication of self‐supporting, branched networks with multiple channel diameters is particularly challenging. Herein, the Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE‐3DP) approach for constructing perfusable networks of interconnected channels with precise control over branching geometries and vessel sizes is presented. To achieve user‐specified channel dimensions, this technique leverages the predictable diffusion of cross‐linking reaction‐initiators released from sacrificial inks printed within a hydrogel precursor. The versatility of GUIDE‐3DP to be adapted for use with diverse physicochemical cross‐linking mechanisms is demonstrated by designing seven printable material systems. Importantly, GUIDE‐3DP allows for the independent tunability of both the inner and outer diameters of the printed channels and the ability to fabricate seamless junctions at branch points. This 3D bioprinting platform is uniquely suited for fabricating lumenized structures with complex shapes characteristic of multiple hollow vessels throughout the body. As an exemplary application, the fabrication of vasculature‐like networks lined with endothelial cells is demonstrated. GUIDE‐3DP represents an important advance toward the fabrication of self‐supporting, physiologically relevant networks with intricate and perfusable geometries. 
    more » « less
  5. Abstract Surface and upper-ocean measurements of mesoscale eddies have revealed the central role they play in ocean transport, but their interior and deep ocean characteristics remain undersampled and underexplored. In this study, mooring arrays, sampling with high vertical resolution, and a high-resolution global atmosphere–ocean coupled simulation are used to characterize full-depth mesoscale eddy vertical structure. The vertical structure of eddy kinetic energy, e.g., partitioning of barotropic to baroclinic eddy kinetic energy or vertical modal structure, is shown to depend partly on bathymetric slope and roughness. This influence is contextualized alongside additional factors, such as latitude and vertical density stratification, to present a global landscape of vertical structure. The results generally reveal eddy vertical structure to decay with increasing depth, consistent with theoretical expectations relating to the roles of surface-intensified stratification and buoyancy anomalies. However, at high latitudes and where the seafloor is markedly flat and smooth (approximately 20% of the ocean’s area), mesoscale eddy vertical structures are significantly more barotropic by an approximate factor of 2–5. From a climate modeling perspective, these results can inform the construction, implementation, and improvement of energetic parameterizations that account for the underrepresentation of mesoscale eddies and their effects. They also offer expectation as to a landscape of eddy vertical structure to be used in inferring vertical structure from surface measurements. Significance StatementThis work addresses the question of how do ocean seafloor features (bathymetry) affect the vertical structure of ocean currents and eddies? Seafloor features modify eddies in complex ways not often accounted for in global ocean simulations. We analyze high-resolution velocity observations, find diverse structures at four mooring sites, and consider how sloping and rough bathymetry change distributions of eddy kinetic energy throughout the water column. Comparison to theory and model output reveals a relationship between vertical structure and bathymetry. These results show that vertical structures vary significantly with bathymetry, density stratification, and latitude and contribute to model development efforts to reproduce the effects of eddy turbulence without explicit representation. These results also enhance interpretations of more numerous surface observations. 
    more » « less