Mechanically interlocked molecules (MIMs) represent an exciting yet underexplored area of research in the context of carbon nanoscience. Recently, work from our group and others has shown that small carbon nanotube fragments—[n]cycloparaphenylenes ([n]CPPs) and related nanohoop macrocycles—may be integrated into mechanically interlocked architectures by leveraging supramolecular interactions, covalent tethers, or metal‐ion templates. Still, available synthetic methods are typically difficult and low yielding, and general methods that allow for the creation of a wide variety of these structures are limited. Here we report an efficient route to interlocked nanohoop structures via the active template Cu‐catalyzed azide‐alkyne cycloaddition (AT−CuAAC) reaction. With the appropriate choice of substituents, a macrocyclic precursor to 2,2′‐bipyridyl embedded [9]CPP (bipy[9]CPP) participates in the AT−CuAAC reaction to provide [2]rotaxanes in near‐quantitative yield, which can then be converted into the fully π‐conjugated catenane structures. Through this approach, two nanohoop[2]catenanes are synthesized which consist of a bipy[9]CPP catenated with either Tz[10]CPP or Tz[12]CPP (where
This content will become publicly available on February 22, 2025
Mechanically interlocked molecules (MIMs) represent an exciting yet underexplored area of research in the context of carbon nanoscience. Recently, work from our group and others has shown that small carbon nanotube fragments—[n]cycloparaphenylenes ([n]CPPs) and related nanohoop macrocycles—may be integrated into mechanically interlocked architectures by leveraging supramolecular interactions, covalent tethers, or metal‐ion templates. Still, available synthetic methods are typically difficult and low yielding, and general methods that allow for the creation of a wide variety of these structures are limited. Here we report an efficient route to interlocked nanohoop structures via the active template Cu‐catalyzed azide‐alkyne cycloaddition (AT−CuAAC) reaction. With the appropriate choice of substituents, a macrocyclic precursor to 2,2′‐bipyridyl embedded [9]CPP (bipy[9]CPP) participates in the AT−CuAAC reaction to provide [2]rotaxanes in near‐quantitative yield, which can then be converted into the fully π‐conjugated catenane structures. Through this approach, two nanohoop[2]catenanes are synthesized which consist of a bipy[9]CPP catenated with either Tz[10]CPP or Tz[12]CPP (where
- NSF-PAR ID:
- 10500060
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- ISSN:
- 0044-8249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Tz denotes a 1,2,3‐triazole moiety replacing one phenylene ring in the [n]CPP backbone). -
Abstract Addition of the bipyridyl‐embedded cycloparaphenylene nanohoop bipy[9]CPP to [Fe{H2B(pyz)2}] (pyz=pyrazolyl) produces the distorted octahedral complex [Fe(bipy[9]CPP){H2B(pyz)2}2] (
1 ). The molecular structure of1 shows that the nanohoop ligand contains a non‐planar bipy unit. Magnetic susceptibility measurements indicate spin‐crossover (SCO) behaviour with aT 1/2of 130 K, lower than that of 160 K observed with the related compound [Fe(bipy){H2B(pyz)2}2] (2 ), which contains a conventional bipy ligand. A computational study of1 and2 reveals that the curvature of the nanohoop leads to the different SCO properties, suggesting that the SCO behaviour of iron(II) can be tuned by varying the size and diameter of the nanohoop. -
Abstract Addition of the bipyridyl‐embedded cycloparaphenylene nanohoop bipy[9]CPP to [Fe{H2B(pyz)2}] (pyz=pyrazolyl) produces the distorted octahedral complex [Fe(bipy[9]CPP){H2B(pyz)2}2] (
1 ). The molecular structure of1 shows that the nanohoop ligand contains a non‐planar bipy unit. Magnetic susceptibility measurements indicate spin‐crossover (SCO) behaviour with aT 1/2of 130 K, lower than that of 160 K observed with the related compound [Fe(bipy){H2B(pyz)2}2] (2 ), which contains a conventional bipy ligand. A computational study of1 and2 reveals that the curvature of the nanohoop leads to the different SCO properties, suggesting that the SCO behaviour of iron(II) can be tuned by varying the size and diameter of the nanohoop. -
Molecules and materials that demonstrate large amplitude responses to minor changes in their local environment play an important role in the development of new forms of nanotechnology. Molecular daisy chains are a type of a mechanically interlocked molecule that are particularly sensitive to such changes in which, in the presence of certain stimuli, the molecular linkage enables muscle‐like movement between a reduced‐length contracted form and an increased‐length expanded form. To date, all reported syntheses of molecular daisy chains are accomplished via passive‐template methods, resulting in a majority of structures being switchable only through the addition of an exogenous stimuli such as metal ions or changes in pH. Here, we describe a new approach to these structural motifs that exploits a multi‐component active‐metal template synthesis to mechanically interlock two pi‐rich nanohoop macrocycles into a molecular daisy chain that undergoes large conformational changes using thermal energy.more » « less
-
Abstract Exploration of the reduction chemistry of the 2,2’‐bipyridine (bipy) lanthanide metallocene complexes Cp*2LnCl(bipy) and Cp*2Ln(bipy) (Cp* = C5Me5) resulted in the isolation of a series of complexes with unusual composition and structure including complexes with a single Cp* ligand, multiple azide ligands, and bipy ligands with close parallel orientations. These results not only reveal new structural types, but they also show the diverse chemistry displayed by this redox‐active platform. Treatment of Cp*2NdCl(bipy) with excess KC8resulted in the formation of the mono‐Cp* Nd(III) complex, [K(crypt)]2[Cp*Nd(bipy)2],
1 , as well as [K(crypt)][Cp*2NdCl2],2 , and the previously reported [K(crypt)][Cp*2Nd(bipy)]. A mono‐Cp* Lu(III) complex, Cp*Lu(bipy)2,3 , was also found in an attempt to make Cp*2Lu(bipy) from LuCl3, 2 equiv. of KCp*, bipy, and K/KI. Surprisingly, the (bipy)1−ligands in neighboring molecules in the structure of3 are oriented in a parallel fashion with intermolecular C⋅⋅⋅C distances of 3.289(4) Å, which are shorter than the sum of van der Waals radii of two carbon atoms, 3.4 Å. Another product with one Cp* ligand per lanthanide was isolated from the reaction of [K(crypt)][Cp*2Eu(bipy)] with azobenzene, which afforded the dimeric Eu(II) complex, [K(crypt)]2[Cp*Eu(THF)(PhNNPh)]2,4 . Attempts to make4 from the reaction between Cp*2Eu(THF)2and a reduced azobenzene anion generated instead the mixed‐valent Eu(III)/Eu(II) complex, [K(crypt)][Cp*Eu(THF)(PhNNPh)]2,5 , which allows direct comparison with the bimetallic Eu(II) complex4 . Mono‐Cp* complexes of Yb(III) are obtained from reactions of the Yb(II) complex, [K(crypt)][Cp*2Yb(bipy)], with trimethylsilylazide, which afforded the tetra‐azido [K(crypt)]2[Cp*Yb(N3)4],6 , or the di‐azido complex [K(crypt)]2[Cp*Yb(N3)2(bipy)],7 a , depending on the reaction stoichiometry. A mono‐Cp* Yb(III) complex is also isolated from reaction of [K(crypt)][Cp*2Yb(bipy)] with elemental sulfur which forms the mixed polysulfido Yb(III) complex [K(crypt)]2[Cp*Yb(S4)(S5)],8 a . In contrast to these reactions that form mono‐Cp* products, reduction of Cp*2Yb(bipy) with 1 equiv. of KC8in the presence of 18‐crown‐6 resulted in the complete loss of Cp* ligands and the formation of [K(18‐c‐6)(THF)][Yb(bipy)4],9 . The (bipy)1−ligands of9 are arranged in a parallel orientation, as observed in the structure of3 , except in this case this interaction is intramolecular and involves pairs of ligands bound to the same Yb atom. Attempts to reduce further the Sm(II) (bipy)1−complex, Cp*2Sm(bipy) with 2 equiv. of KC8in the presence of excess 18‐crown‐6 led to the isolation of a Sm(III) salt of (bipy)2−with an inverse sandwich Cp* counter‐cation and a co‐crystallized K(18‐c‐6)Cp* unit, [K2(18‐c‐6)2Cp*]2[Cp*2Sm(bipy)]2 ⋅ [K(18‐c‐6)Cp*],10 .