skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Post-fire stabilization of thaw-affected permafrost terrain in northern Alaska
Abstract In 2007, the Anaktuvuk River fire burned more than 1000 km2of arctic tundra in northern Alaska, ~ 50% of which occurred in an area with ice-rich syngenetic permafrost (Yedoma). By 2014, widespread degradation of ice wedges was apparent in the Yedoma region. In a 50 km2area, thaw subsidence was detected across 15% of the land area in repeat airborne LiDAR data acquired in 2009 and 2014. Updating observations with a 2021 airborne LiDAR dataset show that additional thaw subsidence was detected in < 1% of the study area, indicating stabilization of the thaw-affected permafrost terrain. Ground temperature measurements between 2010 and 2015 indicated that the number of near-surface soil thawing-degree-days at the burn site were 3 × greater than at an unburned control site, but by 2022 the number was reduced to 1.3 × greater. Mean annual ground temperature of the near-surface permafrost increased by 0.33 °C/yr in the burn site up to 7-years post-fire, but then cooled by 0.15 °C/yr in the subsequent eight years, while temperatures at the control site remained relatively stable. Permafrost cores collected from ice-wedge troughs (n = 41) and polygon centers (n = 8) revealed the presence of a thaw unconformity, that in most cases was overlain by a recovered permafrost layer that averaged 14.2 cm and 18.3 cm, respectively. Taken together, our observations highlight that the initial degradation of ice-rich permafrost following the Anaktuvuk River tundra fire has been followed by a period of thaw cessation, permafrost aggradation, and terrain stabilization.  more » « less
Award ID(s):
1929170 1806213
PAR ID:
10500087
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ### Access Photos of ~50 permaforst boreholes and associated cores can be accessed and downloaded from the 'AR\_Fire\_Core_Photos' directory via: [https://arcticdata.io/data/10.18739/A2251FM9P/](https://arcticdata.io/data/10.18739/A2251FM9P/) ### Overview The Anaktuvuk River tundra fire burned more than 1,000 square kilometers of permafrost-affected arctic tundra in northern Alaska in 2007. The fire is the largest historical recorded tundra fire on the North Slope of Alaska. Fifty percent of the burn area is underlain by Yedoma permafrost that is characterized by extremely high ground-ice content of organic-rich, silty buried soils and the occurrence of large, syngenetic polygonal ice wedges. Given the high ground-ice content of this terrain, Yedoma is thought to be among the most vulnerable to fire-induced thermokarst in the Arctic. With this dataset, we update observations on near-surface permafrost in the Anaktuvuk River tundra fire burn area from 2009 to 2023 using repeat airborne LiDAR-derived elevation data, ground temperature measurements, and cryostratigraphic studies. We have provided all of the data that has gone into an analysis and resulting paper that has been submitted for peer review at the journal Scientific Reports. The datasets include: - 1 m spatial resolution airborne LiDAR-derived digital terrain models from the summers of 2009, 2014, and 2021. - The area in which thaw subsidence was detected in the multi-temporal LiDAR data using the Geomorphic Change Detection software. - A terrain unit map developed for the 50 square kilometer study area. - Ground temperature time series measurements for a logger located in the burned area and a logger located in an unburned area. The ground temperature data consist of daily mean measurements at a depth of 0.15 m (active layer) and 1.00 m (permafrost) from July 2009 to August 2023. - Photos ~50 permafrost boreholes and the associated cores collected there. - A borehole log and notes pdf also accompanies our studies on the cryostratigraphy of permafrost post-fire and our observations on the recovery of permafrost. 
    more » « less
  2. This data set covers the Anaktuvuk River fire site and maps drained lake basins in this area as described by Jones et al (2015). The data set is derived from airborne Light Detection and Ranging (LiDAR) data acquired in 2009 and 2014. The classification of drained lake basins is based on digital terrain models (DTMs) created from the classified LiDAR data and using the a topographic position index (TPI). The TPI output was manually categorized relative to existing surficial geology maps and refined into the following terrain units: (1) drained lake basins, (2) yedoma uplands, (3) rocky uplands, (4) glaciated upland, (5) river floodplain and (6) tundra stream gulches. The drained lake basin class is the subject of this data set publication. Jones, B., Grosse, G., Arp, C. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci Rep 5, 15865 (2015). https://doi.org/10.1038/srep15865 
    more » « less
  3. This data set covers the Anaktuvuk River fire site and maps drained lake basins in this area as described by Jones et al (2015). The data set is derived from airborne Light Detection and Ranging (LiDAR) data acquired in 2009 and 2014. The classification of drained lake basins is based on digital terrain models (DTMs) created from the classified LiDAR data and using the a topographic position index (TPI). The TPI output was manually categorized relative to existing surficial geology maps and refined into the following terrain units: (1) drained lake basins, (2) yedoma uplands, (3) rocky uplands, (4) glaciated upland, (5) river floodplain and (6) tundra stream gulches. The drained lake basin class is the subject of this data set publication. Jones, B., Grosse, G., Arp, C. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci Rep 5, 15865 (2015). https://doi.org/10.1038/srep15865 
    more » « less
  4. Abstract The permafrost–fire–climate system has been a hotspot in research for decades under a warming climate scenario. Surface vegetation plays a dominant role in protecting permafrost from summer warmth, thus, any alteration of vegetation structure, particularly following severe wildfires, can cause dramatic top–down thaw. A challenge in understanding this is to quantify fire-induced thaw settlement at large scales (>1000 km 2 ). In this study, we explored the potential of using Landsat products for a large-scale estimation of fire-induced thaw settlement across a well-studied area representative of ice-rich lowland permafrost in interior Alaska. Six large fires have affected ∼1250 km 2 of the area since 2000. We first identified the linkage of fires, burn severity, and land cover response, and then developed an object-based machine learning ensemble approach to estimate fire-induced thaw settlement by relating airborne repeat lidar data to Landsat products. The model delineated thaw settlement patterns across the six fire scars and explained ∼65% of the variance in lidar-detected elevation change. Our results indicate a combined application of airborne repeat lidar and Landsat products is a valuable tool for large scale quantification of fire-induced thaw settlement. 
    more » « less
  5. Abstract Tundra fires can dramatically influence plant species cover and abundance, organic layer depth, and the magnitude of seasonal permafrost thaw. However, knowledge of the impact of wildfire on short and long-term interactions between vegetation and permafrost thaw remains limited. Here, we evaluate the spatial and temporal interactions between wildfire disturbance and surface subsidence on a remotely derived proxy for species diversity (i.e. spectral diversity (SD)) of 16 fire scars within the Izaviknek and Kingaglia uplands of southwestern Alaska’s Yukon–Kuskokwim Delta with burn dates between 1971 and 2015. SD was calculated as the sum of squared spectral variance of pixel spectra from the mean spectra, within a plant community (analogous to alpha diversity), between plant communities (beta diversity), and across terrain composed of a mosaic of communities (gamma diversity). Surface subsidence was calculated from spaceborne interferometric synthetic aperture radar data from Sentinel-1. Results indicate the burn scars had consistently lower total gamma diversity and greater rates of subsidence than paired unburned reference areas, where both gamma diversity (R2= 0.74,p< 0.001) and relative subsidence (R2= 0.86,p< 0.001) decreased with the time since burn. Compared to older burn scars, young scars had higher gamma spectral diversities (0.013 and 0.005) and greater subsidence rates (−0.097 cm day−1and −0.053 cm day−1). Communities subsiding at higher rates had higher gamma diversities (R2= 0.81,p< 0.001). Results indicate that rates of post-fire vegetation succession are amplified by the thickening of active layers and surface subsidence that increases both spectral and species diversity over 15 years following fire. These results support the idea that SD may be used as a remotely sensed analog of species diversity, used to advance knowledge of the trajectories of plant community change in response to interacting arctic disturbance regimes. 
    more » « less