skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Integrating Generative Models into Cognitive Architectures for Improved Computational Sociocultural Representations
What might the integration of cognitive architectures and generative models mean for sociocultural representations within both systems? Beyond just integration, we see this question as paramount to understanding the potential wider impact of integrations between these two types of computational systems. Generative models, though an imperfect representation of the world and various con-texts, nonetheless may be useful as general world knowledge with careful considerations of sociocultural representations provided therein, including the represented sociocultural systems or, as we explain, genres of the Human. Thus, such an integration gives an opportunity to develop cognitive models that represent from the physiological/biological time scale to the social timescale and that more accurately represent the effects of ongoing sociocultural systems and structures on behavior. In addition, integrating these systems should prove useful to audit and test many generative models under more realistic cognitive uses and conditions. That is, we can ask what it means that people will likely be using knowledge from such models as knowledge for their own behavior and actions. We further discuss these perspectives and focus these perspectives using ongoing and potential work with (primarily) the ACT-R cognitive architecture. We also discuss issues with using generative models as a system for integration.  more » « less
Award ID(s):
2144887
PAR ID:
10500163
Author(s) / Creator(s):
;
Publisher / Repository:
AAAI Press
Date Published:
Journal Name:
Proceedings of the AAAI Symposium Series
Volume:
2
Issue:
1
ISSN:
2994-4317
Page Range / eLocation ID:
256 to 261
Subject(s) / Keyword(s):
AI Generative AI Cognitive Architecture Cognitive Model ACT-R
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Meta-analytic evidence indicates that the quality of the attachment relationship that infants establish with their primary caregiver has enduring significance for socioemotional and cognitive outcomes. However, the mechanisms by which early attachment experiences contribute to subsequent development remain underspecified. According to attachment theory, early attachment experiences become embodied in the form of cognitive-affective representations, referred to as internal working models (IWMs), that guide future behavior. Little is known, however, about the cognitive architecture of IWMs in infancy. In this article, we discuss significant advances made in the field of infant cognitive development and propose that leveraging insights from this research has the potential to fundamentally shape our understanding of the cognitive architecture of attachment representations in infancy. We also propose that the integration of attachment research into cognitive research can shed light on the role of early experiences, individual differences, and stability and change in infant cognition, as well as open new routes of investigation in cognitive studies, which will further our understanding of human knowledge. We provide recommendations for future research throughout the article and conclude by using our collaborative research as an example. 
    more » « less
  2. Abstract We discuss the emerging new opportunity for building feedback‐rich computational models of social systems using generative artificial intelligence. Referred to as generative agent‐based models (GABMs), such individual‐level models utilize large language models to represent human decision‐making in social settings. We provide a GABM case in which human behavior can be incorporated into simulation models by coupling a mechanistic model of human interactions with a pre‐trained large language model. This is achieved by introducing a simple GABM of social norm diffusion in an organization. For educational purposes, the model is intentionally kept simple. We examine a wide range of scenarios and the sensitivity of the results to several changes in the prompt. We hope the article and the model serve as a guide for building useful dynamic models of various social systems that include realistic human reasoning and decision‐making. © 2024 System Dynamics Society. 
    more » « less
  3. Social navigation—such as anticipating where gossip may spread, or identifying which acquaintances can help land a job—relies on knowing how people are connected within their larger social communities. Problematically, for most social networks, the space of possible relationships is too vast to observe and memorize. Indeed, people's knowledge of these social relations is well known to be biased and error-prone. Here, we reveal that these biased representations reflect a fundamental computation that abstracts over individual relationships to enable principled inferences about unseen relationships. We propose a theory of network representation that explains how people learn inferential cognitive maps of social relations from direct observation, what kinds of knowledge structures emerge as a consequence, and why it can be beneficial to encode systematic biases into social cognitive maps. Leveraging simulations, laboratory experiments, and “field data” from a real-world network, we find that people abstract observations of direct relations (e.g., friends) into inferences of multistep relations (e.g., friends-of-friends). This multistep abstraction mechanism enables people to discover and represent complex social network structure, affording adaptive inferences across a variety of contexts, including friendship, trust, and advice-giving. Moreover, this multistep abstraction mechanism unifies a variety of otherwise puzzling empirical observations about social behavior. Our proposal generalizes the theory of cognitive maps to the fundamental computational problem of social inference, presenting a powerful framework for understanding the workings of a predictive mind operating within a complex social world. 
    more » « less
  4. A wide variety of machine learning tasks such as knowledge base completion, ontology alignment, and multi-label classification can benefit from incorporating into learning differentiable representations of graphs or taxonomies. While vectors in Euclidean space can theoretically represent any graph, much recent work shows that alternatives such as complex, hyperbolic, order, or box embeddings have geometric properties better suited to modeling real-world graphs. Experimentally these gains are seen only in lower dimensions, however, with performance benefits diminishing in higher dimensions. In this work, we introduce a novel variant of box embeddings that uses a learned smoothing parameter to achieve better representational capacity than vector models in low dimensions, while also avoiding performance saturation common to other geometric models in high dimensions. Further, we present theoretical results that prove box embeddings can represent any DAG. We perform rigorous empirical evaluations of vector, hyperbolic, and region-based geometric representations on several families of synthetic and real-world directed graphs. Analysis of these results exposes correlations between different families of graphs, graph characteristics, model size, and embedding geometry, providing useful insights into the inductive biases of various differentiable graph representations. 
    more » « less
  5. Abbott, Derek (Ed.)
    Abstract Human vision, thought, and planning involve parsing and representing objects and scenes using structured representations based on part-whole hierarchies. Computer vision and machine learning researchers have recently sought to emulate this capability using neural networks, but a generative model formulation has been lacking. Generative models that leverage compositionality, recursion, and part-whole hierarchies are thought to underlie human concept learning and the ability to construct and represent flexible mental concepts. We introduce Recursive Neural Programs (RNPs), a neural generative model that addresses the part-whole hierarchy learning problem by modeling images as hierarchical trees of probabilistic sensory-motor programs. These programs recursively reuse learned sensory-motor primitives to model an image within different spatial reference frames, enabling hierarchical composition of objects from parts and implementing a grammar for images. We show that RNPs can learn part-whole hierarchies for a variety of image datasets, allowing rich compositionality and intuitive parts-based explanations of objects. Our model also suggests a cognitive framework for understanding how human brains can potentially learn and represent concepts in terms of recursively defined primitives and their relations with each other. 
    more » « less