skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Electro-elastic migration of particles in viscoelastic fluid flows

Microfluidic manipulation of particles usually relies on their cross-stream migration. A center- or wall-directed motion has been reported for particles leading or lagging the Poiseuille flow of viscoelastic polyethylene oxide (PEO) solution via positive or negative electrophoresis. Such electro-elastic migration is exactly opposite to the electro-inertial migration of particles in a Newtonian fluid flow. We demonstrate here through the top- and side-view imaging that the leading and lagging particles in the electro-hydrodynamic flow of PEO solution migrate toward the centerline and corners of a rectangular microchannel, respectively. Each of these electro-elastic particle migrations is reduced in the PEO solution with shorter polymers though neither of them exhibits a strong dependence on the particle size. Both phenomena can be reasonably explained by the theory in terms of the ratios of the forces involved in the process. Decreasing the PEO concentration causes the particle migration to shift from the viscoelastic mode to the Newtonian mode, for which the magnitude of the imposed electric field is found to play an important role.

 
more » « less
Award ID(s):
2100772 2127825
PAR ID:
10500305
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute Physics
Date Published:
Journal Name:
Physics of Fluids
Volume:
35
Issue:
9
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electroosmotic flow (EOF) has been widely used to transport fluids and samples in micro‐ and nanofluidic channels for lab‐on‐a‐chip applications. This essentially surface‐driven plug‐like flow is, however, sensitive to both the fluid and wall properties, of which any inhomogeneity may draw disturbances to the flow and even instabilities. Existing studies on EOF instabilities have been focused primarily upon Newtonian fluids though many of the chemical and biological solutions are actually non‐Newtonian. We carry out a systematic experimental investigation of the fluid rheological effects on the elastic instability in the EOF of phosphate buffer‐based polymer solutions through T‐shaped microchannels. We find that electro‐elastic instabilities can be induced in shear thinning polyacrylamide (PAA) and xanthan gum (XG) solutions if the applied direct current voltage is above a threshold value. However, no instabilities are observed in Newtonian or weakly shear thinning viscoelastic fluids including polyethylene oxide (PEO), polyvinylpyrrolidone (PVP), and hyaluronic acid (HA) solutions. We also perform a quantitative analysis of the wave parameters for the observed elasto‐elastic instabilities.

     
    more » « less
  2. Abstract

    Insulator‐based dielectrophoretic (iDEP) microdevices have been limited to work with Newtonian fluids. We report an experimental study of the fluid rheological effects on iDEP focusing and trapping of polystyrene particles in polyethylene oxide, xanthan gum, and polyacrylamide solutions through a constricted microchannel. Particle focusing and trapping in the mildly viscoelastic polyethylene oxide solution are slightly weaker than in the Newtonian buffer. They are, however, significantly improved in the strongly viscoelastic and shear thinning polyacrylamide solution. These observed particle focusing behaviors exhibit a similar trend with respect to electric field, consistent with a revised theoretical analysis for iDEP focusing in non‐Newtonian fluids. No apparent focusing of particles is achieved in the xanthan gum solution, though the iDEP trapping can take place under a much larger electric field than the other fluids. This is attributed to the strong shear thinning‐induced influences on both the electroosmotic flow and electrokinetic/dielectrophoretic motions.

     
    more » « less
  3. Abstract

    A novel method is reported to enhance the focusing of microparticle in the viscoelastic fluid. Gradually contracted geometry is designed in microchannel, which changes the distribution of the elastic lift force on the cross section. Additionally, it induces the viscous drag force and the Saffman lift force in the lateral direction. Under the combined effect of these forces, microparticles fast migrate to the center of the channel. In comparison to the channel with constant cross section, the present channel significantly enhances the particle's lateral migration, leading to efficient viscoelastic particle focusing in a short channel length. The influence of flow rate, channel length, particle size and fluid property on the particle focusing is also investigated. With simple structure, small footprint and perfect particle focusing performance, the present device has great potential in the particle focusing processes in various lab‐on‐a‐chip applications.

     
    more » « less
  4. Growth of the microfluidics field has triggered numerous advances in focusing and separating microparticles, with such systems rapidly finding applications in biomedical, chemical, and environmental fields. The use of shear-thinning viscoelastic fluids in microfluidic channels is leading to evolution of elasto-inertial focusing. Herein, we showed that the interplay between the elastic and shear-gradient lift forces, as well as the secondary flow transversal drag force that is caused by the non-zero second normal stress difference, lead to different particle focusing patterns in the elasto-inertial regime. Experiments and 3D simulations were performed to study the effects of flowrate, particle size, and the shear-thinning extent of the fluid on the focusing patterns. The Giesekus constitutive equation was used in the simulations to capture the shear-thinning and viscoelastic behaviors of the solution used in the experiments. At low flowrate, with Weissenberg number Wi ~ O(1), both the elastic force and secondary flow effects push particles towards the channel center. However, at a high flowrate, Wi ~ O(10), the elastic force direction is reversed in the central regions. This remarkable behavior of the elastic force, combined with the enhanced shear-gradient lift at the high flowrate, pushes particles away from the channel center. Additionally, a precise prediction of the focusing position can only be made when the shear-thinning extent of the fluid is correctly estimated in the modeling. The shear-thinning also gives rise to the unique behavior of the inertial forces near the channel walls which is linked with the ‘warped’ velocity profile in such fluids. 
    more » « less
  5. We conduct experiments with flexible swimmers to address the impact of fluid viscoelasticity on their locomotion. The swimmers are composed of a magnetic head actuated in rotation by a frequency-controlled magnetic field and a flexible tail whose deformation leads to forward propulsion. We consider both viscous Newtonian and glucose-based Boger fluids with similar viscosities. We find that the elasticity of the fluid systematically enhances the locomotion speed of the swimmer and that this enhancement increases with Deborah number. Using particle image velocimetry to visualize the flow field, we find a significant difference in the amount of shear between the rear and leading parts of the swimmer head. We conjecture that viscoelastic normal stresses lead to a net elastic forces in the swimming direction and thus a faster swimming speed.

     
    more » « less