Abstract Image sensors with internal computing capability enable in-sensor computing that can significantly reduce the communication latency and power consumption for machine vision in distributed systems and robotics. Two-dimensional semiconductors have many advantages in realizing such intelligent vision sensors because of their tunable electrical and optical properties and amenability for heterogeneous integration. Here, we report a multifunctional infrared image sensor based on an array of black phosphorous programmable phototransistors (bP-PPT). By controlling the stored charges in the gate dielectric layers electrically and optically, the bP-PPT’s electrical conductance and photoresponsivity can be locally or remotely programmed with 5-bit precision to implement an in-sensor convolutional neural network (CNN). The sensor array can receive optical images transmitted over a broad spectral range in the infrared and perform inference computation to process and recognize the images with 92% accuracy. The demonstrated bP image sensor array can be scaled up to build a more complex vision-sensory neural network, which will find many promising applications for distributed and remote multispectral sensing.
more »
« less
Temperature sensing using junctions between mobile ions and mobile electrons
Significance We develop temperature sensors on the basis of charges accumulated at the electrolyte/dielectric interface and dielectric/electrode interface. The accumulated charges make the temperature sensors self-powered, which simplifies circuit design and enables portable sensing. The sensors are stretchable, but deformation does not affect temperature sensing. The sensors have high sensitivity and fast response. They can be made small and transparent. Such temperature sensors open new possibilities to create human–machine interfaces and soft robots in healthcare and engineering.
more »
« less
- Award ID(s):
- 2011754
- PAR ID:
- 10500421
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 4
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The ability to sense ambient temperature pervasively, albeit crucial for many applications, is not yet available, causing problems such as degraded indoor thermal comfort and unexpected/premature shutoffs of mobile devices. To enable pervasive sensing of ambient temperature, we propose use of mobile device batteries as thermometers based on (i) the fact that people always carry their battery-powered smart phones, and (ii) our empirical finding that the temperature of mobile devices' batteries is highly correlated with that of their operating environment. Specifically, we design and implement Batteries-as-Thermometers (BaT), a temperature sensing service based on the information of mobile device batteries, expanding the ability to sense the device's ambient temperature without requiring additional sensors or taking up the limited on-device space. We have evaluated BaT on 6 Android smartphones using 19 laboratory experiments and 36 real-life field-tests, showing an average of 1.25°C error in sensing the ambient temperature.more » « less
-
The structural capacity of pavement foundation is altered by moisture conditions. Reliable moisture monitoring of geomaterials throughout pavement service life is critical for asset management by transportation agencies. Improved moisture sensing enables transportation officials and practitioners to better understand performance of complex recycled materials under frequent extreme rain events. Although moisture sensing for geomaterials has improved significantly, there are still challenges when using sensors in recycled materials that may contain unhydrated cement, aged asphalt, or both. Challenges include the development of calibration functions that account for the presence of recycled materials and robust installation procedures, as technology was developed mostly for agricultural practices. In this study, a series of experiments were conducted to suggest improvements for installation techniques and data interpretation of soil moisture and water potential sensors. Suggested installation guidelines minimize wash-out and erosion potential at the soil–sensor interface. Experimental results indicate a strong bilinear relation between dielectric of recycled materials and water content, with a region of relatively small change governed by dielectric permittivity of air and a region of rapid change controlled by dielectric permittivity of water. Moreover, it was found that dielectric permittivity is not significantly affected by aggregate internal structure as dielectric for a specific moisture content for different compaction degrees is relatively similar. Furthermore, soil water characteristic curves obtained using the water potential sensor and improved installation technique compare reasonably well with laboratory results obtained with traditional equipment. Reliability of both moisture and water potential sensors was improved with the suggested guidelines.more » « less
-
Abstract Passive and wireless Radio‐Frequency (RF) sensors are a unique, enabling modality for emerging applications in environmental sensing. These sensors exhibit several key features that may unlock new functionalities in complex environments: sensors are composed of zero electronic components, are wirelessly interrogated even in opaque media, and structures are often inherently biocompatible. Such capabilities make it unique in the realm of sensing architectures. Here, the broadside‐coupled, split‐ring resonator is studied as a compact and versatile model structure for RF sensing (of potentially mechanical and biochemical environments). A new analytical model is derived to assess resonator behavior—these yield a rapid, first‐order approximation of the resonator resonant frequency or sensitivity. Finally, experimental investigations into how sensors may be optimally designed, sized, and interrogated to enhance sensitivity or spectral intensity are performed. These studies encompass a wide variety of potential dimensional and dielectric modifications that may be relevant to emerging sensors. Last, hydrogel polymeric sensors are synthesized and studied to assess how practical sensors may deviate in response from expectations. Such investigations lay the groundwork for how such sensing architectures may be adapted to fit application needs.more » « less
-
We propose a field-based design for dielectric antennas to interface diamond color centers in dielectric membranes with a Gaussian propagating far field. This antenna design enables an efficient spin-photon interface with a Purcell factor exceeding 400 and a 93% mode overlap to a 0.4 numerical aperture far-field Gaussian mode. The antenna design with the back reflector is robust to fabrication imperfections, such as variations in the dimensions of the dielectric perturbations and the emitter dipole location. The field-based dielectric antenna design provides an efficient free-space interface for closely packed arrays of quantum memories for multiplexed quantum repeaters, arrayed quantum sensors, and modular quantum computers.more » « less
An official website of the United States government

