Abstract BackgroundComputational cell type deconvolution enables the estimation of cell type abundance from bulk tissues and is important for understanding tissue microenviroment, especially in tumor tissues. With rapid development of deconvolution methods, many benchmarking studies have been published aiming for a comprehensive evaluation for these methods. Benchmarking studies rely on cell-type resolved single-cell RNA-seq data to create simulated pseudobulk datasets by adding individual cells-types in controlled proportions. ResultsIn our work, we show that the standard application of this approach, which uses randomly selected single cells, regardless of the intrinsic difference between them, generates synthetic bulk expression values that lack appropriate biological variance. We demonstrate why and how the current bulk simulation pipeline with random cells is unrealistic and propose a heterogeneous simulation strategy as a solution. The heterogeneously simulated bulk samples match up with the variance observed in real bulk datasets and therefore provide concrete benefits for benchmarking in several ways. We demonstrate that conceptual classes of deconvolution methods differ dramatically in their robustness to heterogeneity with reference-free methods performing particularly poorly. For regression-based methods, the heterogeneous simulation provides an explicit framework to disentangle the contributions of reference construction and regression methods to performance. Finally, we perform an extensive benchmark of diverse methods across eight different datasets and find BayesPrism and a hybrid MuSiC/CIBERSORTx approach to be the top performers. ConclusionsOur heterogeneous bulk simulation method and the entire benchmarking framework is implemented in a user friendly packagehttps://github.com/humengying0907/deconvBenchmarkingandhttps://doi.org/10.5281/zenodo.8206516, enabling further developments in deconvolution methods. 
                        more » 
                        « less   
                    
                            
                            Fourteen years of cellular deconvolution: methodology, applications, technical evaluation and outstanding challenges
                        
                    
    
            Abstract Single-cell RNA sequencing (scRNA-Seq) is a recent technology that allows for the measurement of the expression of all genes in each individual cell contained in a sample. Information at the single-cell level has been shown to be extremely useful in many areas. However, performing single-cell experiments is expensive. Although cellular deconvolution cannot provide the same comprehensive information as single-cell experiments, it can extract cell-type information from bulk RNA data, and therefore it allows researchers to conduct studies at cell-type resolution from existing bulk datasets. For these reasons, a great effort has been made to develop such methods for cellular deconvolution. The large number of methods available, the requirement of coding skills, inadequate documentation, and lack of performance assessment all make it extremely difficult for life scientists to choose a suitable method for their experiment. This paper aims to fill this gap by providing a comprehensive review of 53 deconvolution methods regarding their methodology, applications, performance, and outstanding challenges. More importantly, the article presents a benchmarking of all these 53 methods using 283 cell types from 30 tissues of 63 individuals. We also provide an R package named DeconBenchmark that allows readers to execute and benchmark the reviewed methods (https://github.com/tinnlab/DeconBenchmark). 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10500435
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 52
- Issue:
- 9
- ISSN:
- 0305-1048
- Format(s):
- Medium: X Size: p. 4761-4783
- Size(s):
- p. 4761-4783
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Advances in single-cell RNA sequencing (scRNAseq) technologies have allowed us to study the heterogeneity of cell populations. The cell compositions of tissues from different hosts may vary greatly, indicating the condition of the hosts, from which the samples are collected. However, the high sequencing cost and the lack of fresh tissues make single-cell approaches less appealing. In many cases, it is practically impossible to generate single-cell data in a large number of subjects, making it challenging to monitor changes in cell type compositions in various diseases. Here we introduce a novel approach, named Deconvolution using Weighted Elastic Net (DWEN), that allows researchers to accurately estimate the cell type compositions from bulk data samples without the need of generating single-cell data. It also allows for the re-analysis of bulk data collected from rare conditions to extract more in-depth cell-type level insights. The approach consists of two modules. The first module constructs the cell type signature matrix from single-cell data while the second module estimates the cell type compositions of input bulk samples. In an extensive analysis using 20 datasets generated from scRNA-seq data of different human tissues, we demonstrate that DWEN outperforms current state-of-the-arts in estimating cell type compositions of bulk samples.more » « less
- 
            Abstract We present Bisque, a tool for estimating cell type proportions in bulk expression. Bisque implements a regression-based approach that utilizes single-cell RNA-seq (scRNA-seq) or single-nucleus RNA-seq (snRNA-seq) data to generate a reference expression profile and learn gene-specific bulk expression transformations to robustly decompose RNA-seq data. These transformations significantly improve decomposition performance compared to existing methods when there is significant technical variation in the generation of the reference profile and observed bulk expression. Importantly, compared to existing methods, our approach is extremely efficient, making it suitable for the analysis of large genomic datasets that are becoming ubiquitous. When applied to subcutaneous adipose and dorsolateral prefrontal cortex expression datasets with both bulk RNA-seq and snRNA-seq data, Bisque replicates previously reported associations between cell type proportions and measured phenotypes across abundant and rare cell types. We further propose an additional mode of operation that merely requires a set of known marker genes.more » « less
- 
            Abstract SummaryWith the advancements of high-throughput single-cell RNA-sequencing protocols, there has been a rapid increase in the tools available to perform an array of analyses on the gene expression data that results from such studies. For example, there exist methods for pseudo-time series analysis, differential cell usage, cell-type detection RNA-velocity in single cells, etc. Most analysis pipelines validate their results using known marker genes (which are not widely available for all types of analysis) and by using simulated data from gene-count-level simulators. Typically, the impact of using different read-alignment or unique molecular identifier (UMI) deduplication methods has not been widely explored. Assessments based on simulation tend to start at the level of assuming a simulated count matrix, ignoring the effect that different approaches for resolving UMI counts from the raw read data may produce. Here, we present minnow, a comprehensive sequence-level droplet-based single-cell RNA-sequencing (dscRNA-seq) experiment simulation framework. Minnow accounts for important sequence-level characteristics of experimental scRNA-seq datasets and models effects such as polymerase chain reaction amplification, cellular barcodes (CB) and UMI selection and sequence fragmentation and sequencing. It also closely matches the gene-level ambiguity characteristics that are observed in real scRNA-seq experiments. Using minnow, we explore the performance of some common processing pipelines to produce gene-by-cell count matrices from droplet-bases scRNA-seq data, demonstrate the effect that realistic levels of gene-level sequence ambiguity can have on accurate quantification and show a typical use-case of minnow in assessing the output generated by different quantification pipelines on the simulated experiment. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
- 
            Abstract To understand phenotypic variations and key factors which affect disease susceptibility of complex traits, it is important to decipher cell‐type tissue compositions. To study cellular compositions of bulk tissue samples, one can evaluate cellular abundances and cell‐type‐specific gene expression patterns from the tissue transcriptome profiles. We develop both fixed and mixed models to reconstruct cellular expression fractions for bulk‐profiled samples by using reference single‐cell (sc) RNA‐sequencing (RNA‐seq) reference data. In benchmark evaluations of estimating cellular expression fractions, the mixed‐effect models provide similar results as an elegant machine learning algorithm named cell‐type identification by estimating relative subsets of RNA transcripts (CIBERSORTx), which is a well‐known and reliable procedure to reconstruct cell‐type abundances and cell‐type‐specific gene expression profiles. In real data analysis, the mixed‐effect models outperform or perform similarly as CIBERSORTx. The mixed models perform better than the fixed models in both benchmark evaluations and data analysis. In simulation studies, we show that if the heterogeneity exists in scRNA‐seq data, it is better to use mixed models with heterogeneous mean and variance–covariance. As a byproduct, the mixed models provide fractions of covariance between subject‐specific gene expression and cell types to measure their correlations. The proposed mixed models provide a complementary tool to dissect bulk tissues using scRNA‐seq data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
