skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exterior Calculus in Graphics: Course Notes for a SIGGRAPH 2023 Course
The demand for a more advanced multivariable calculus has rapidly increased in computer graphics research, such as physical simulation, geometry synthesis, and differentiable rendering. Researchers in computer graphics often have to turn to references outside of graphics research to study identities such as the Reynolds Transport Theorem or the geometric relationship between stress and strain tensors. This course presents a comprehensive introduction to exterior calculus, which covers many of these advanced topics in a geometrically intuitive manner. The course targets anyone who knows undergraduate-level multivariable calculus and linear algebra and assumes no more prerequisites. Contrary to the existing references, which only serve the pure math or engineering communities, we use timely and relevant graphics examples to illustrate the theory of exterior calculus. We also provide accessible explanations to several advanced topics, including continuum mechanics, fluid dynamics, and geometric optimizations. The course is organized into two main sections: a lecture on the core exterior calculus notions and identities with short examples of graphics applications, and a series of mini-lectures on graphics topics using exterior calculus.  more » « less
Award ID(s):
2239062
PAR ID:
10500504
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
SIGGRAPH '23: ACM SIGGRAPH 2023 Conference Proceedings
ISBN:
9798400701450
Page Range / eLocation ID:
1 to 126
Format(s):
Medium: X
Location:
Los Angeles California
Sponsoring Org:
National Science Foundation
More Like this
  1. College calculus plays an important role in STEM students’ degree and career aspirations. One of the key factors considered in assessing a student’s ability to be successful in calculus is their proficiency in topics from prior mathematics courses such as algebra and precalculus. This study set out to examine the impact of students’ precalculus proficiency on their achievement in introductory calculus based on their classroom environment. Results from the implementation of the Modeling Practices in Calculus (MPC) model, an innovative, active learning approach, are presented. Using a randomized-controlled trial research design, students were randomly assigned to MPC and traditional, lecture-based calculus sections. The Precalculus Concept Assessment inventory was administered to gauge students’ precalculus proficiency. We found that students exposed to the MPC model were more likely to be successful in their calculus course, even if they began with low precalculus proficiency. Also, students enrolled in the MPC sections saw significant growth in their precalculus proficiency from the beginning to the end of the semester. Additionally, we observed this model providing support for students in key demographics (low proficiency, female, underclassmen) in terms of the development of their proficiency that they may not receive in traditional classrooms. 
    more » « less
  2. ABSTRACT In the case of General Chemistry, many engineering students only take a one semester class with important topics such as kinetics and equilibrium being given limited coverage. Considerable time is spent covering materials already covered in other courses such as General Physics and Introduction to Engineering. Moreover, most GChem courses are oriented toward health science majors and lack a materials focus relevant to engineering. Taking an atoms first approach, we developed and now run a one-semester course in general chemistry for engineers emphasizing relevant materials topics. Laboratory exercises integrate practical examples of materials science enriching the course for engineering students. First-semester calculus and a calculus-based introduction to engineering course are prerequisites, which enables teaching almost all the topics from a traditional two semester GChem course in this new course with advance topics as well. To support this course, an open access textbook in LibreText, formerly ChemWiki was developed entitled General Chemistry for Engineering . Many of the topics were supported using Chemical Excelets and Materials Science Excelets, which are interactive Excel/Calc spreadsheets. The laboratory includes data analysis and interpretation, calibration, error analysis, reactions, kinetics, electrochemistry, and spectrophotometry. To acquaint the students with online collaboration typical of today’s technical workplace Google Drive was used for data analysis and report preparation in the laboratory. 
    more » « less
  3. null (Ed.)
    This full research-track paper demonstrates growth in computational thinking in a cohort of engineering students completing their first course in engineering at a large Southwestern university in the United States. Computational thinking has been acknowledged as a key aspect of engineering education and an intrinsic part of multiple ABET outcomes. However, computing is an area where some students have more privileges (e.g. access and exposure to meaningful use of computers) than others. Integrating computing into engineering, especially early in the curriculum, may exacerbate existing experiential disadvantages students from excluded social identities experience. Most introductory engineering programs have a component of programming and/or computational thinking. A comprehensive literature review showed that no existing computational thinking framework fully met the needs of students and professors in engineering and computer science. As a result, this team created the Engineering Computational Thinking Diagnostic (ECTD). This diagnostic was assessed and improved during the 2019-2020 academic year. Data was collected from a cohort in a first-year engineering course that included topics in mathematics, engineering problem solving, and computation. Pre- and post-test data analysis with 62 participants documents statistically significant student growth in computational thinking in this course. Significant differences were not found by gender or a limited racially-based analysis. This diagnostic is of interest and relevance to all institutions providing engineering and computing programs. The short-term impact of this research includes an innovative approach to gauge student abilities in computational thinking early in a course in order to add appropriate intervention activities into lesson plans. The long-term impact is the creation of a measurement of student learning of computational thinking in engineering for courses and programs that wish to develop this important skill in their students. 
    more » « less
  4. Introductory data science courses are appearing at colleges, universities, and high schools around the country and the world. What topics do we cover in these courses, and how and why are these decisions made? How do we consider the background knowledge of our students and how they hope to utilize their skills after this course (whether professionally, additional courses, or as an engaged citizen)? In addition, the course is being taught by computer scientists, statisticians, business analysts, mathematicians, journalists, etc. Each of these disciplines approaches the topics differently. What upskilling is required of instructors to prepare them to integrate material from academic disciplines in which they were not trained into the course? How much, if any, cross-disciplinary collaboration, and discussion occurs or should occur in designing this course? Participants in this birds-of-a-feather will share their decision processes and choices about introductory data science courses that they teach or are designing. This includes choices made about the content as well as whether and how upskilling occurs. They will review and refine a list of current data science topics created based on national surveys of data science instructors as well as a review of curriculum guidelines. Close attention will be paid to differing language between data science instructors from different academic backgrounds. We welcome new and experienced data science instructors, educators planning on or interested in teaching such a course. 
    more » « less
  5. Abstract This study explores student agency in the context of a culturally authentic computer science (CS) curriculum implemented in an introductory CS course in two high schools. Drawing on focus group and interview data, the study utilizes qualitative research methods to examine how students exercise critical agency as they engage in the course and how the curriculum supports student agency. Findings suggest three ways in which the curriculum served as a context for student agency: (1) gaining CS knowledge and skills that students then apply to address real-world needs and problems, (2) creating opportunities to “try-on” or improvise new identities and/or envision “future selves” in CS, and (3) engaging in personally relevant project work that leverages assets students brought to their experience with the curriculum. Implications for CS education research and practice are discussed. 
    more » « less