skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust quantification of the burst of OH radicals generated by ambient particles in nascent cloud droplets using a direct-to-reagent approach
Reactive oxygen species (ROS) play a central role in chemistry in cloud water, as well as in other aqueous phases such as lung fluid and in wastewater treatment. Recently, work simulating nascent cloud droplets showed that aerosol particles produce a large burst of OH radicals when they first take up water. This activity stops abruptly, within two minutes. The source of the OH radicals is not well understood, but it likely includes the aqueous phase chemistry of ROS and/or organic hydroperoxides and redox active metals such as iron and copper. ROS and their precursors are in general highly reactive and labile, and thus may not survive during traditional sampling methods, which typically involve multi-hour collection on a filter or direct sampling into water or another collection liquid. Further, these species may further decay during storage. Here, we develop a technique to grow aerosol particles into small droplets and capture the droplets directly into a vial containing the terephthalate probe in water, which immediately scavenges OH radicals produced by aerosol particles. The method uses a Liquid Spot Sampler. Extensive characterization of the approach reveals that the collection liquid picks up substantial OH/OH precursors from the gas phase. This issue is effectively addressed by adding an activated carbon denuder. We then compared OH formation measured with the direct-to-reagent approach vs. filter collection. We find that after a modest correction for OH formed in the collection liquid, the samples collected into the reagent produce about six times those collected on filters, for both PM2.5 and total suspended particulate. This highlights the need for direct-to-reagent measurement approaches to accurately quantify OH production from ambient aerosol particles.  more » « less
Award ID(s):
2001187
PAR ID:
10500586
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Jianmin Chen
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Science of The Total Environment
Volume:
900
Issue:
C
ISSN:
0048-9697
Page Range / eLocation ID:
165736
Subject(s) / Keyword(s):
Liquid spot sampler: OH burst Online aerosol measurement Cloud chemistry
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wildfires, which have been occurring increasingly in the era of climate change, emit massive amounts of particulate matter (PM) into the atmosphere, strongly affecting air quality and public health. Biomass burning aerosols may contain environmentally persistent free radicals (EPFRs, such as semiquinone radicals) and redox-active compounds that can generate reactive oxygen species (ROS, including ·OH, superoxide and organic radicals) in the aqueous phase. However, there is a lack of data on EPFRs and ROS associated with size-segregated wildfire PM, which limits our understanding of their climate and health impacts. We collected size-segregated ambient PM in Southern California during two wildfire events to measure EPFRs and ROS using electron paramagnetic resonance spectroscopy. EPFRs are likely associated with soot particles as they are predominantly observed in submicron particles (PM 1 , aerodynamic diameter ≤ 1 μm). Upon extraction in water, wildfire PM mainly generates ·OH (28–49%) and carbon-centered radicals (∼50%) with minor contributions from superoxide and oxygen-centered organic radicals (2–15%). Oxidative potential measured with the dithiothreitol assay (OP-DTT) is found to be high in wildfire PM 1 , exhibiting little correlation with the radical forms of ROS ( r 2 ≤ 0.02). These results are in stark contrast with PM collected at highway and urban sites, which generates predominantly ·OH (84–88%) that correlates well with OP-DTT ( r 2 ∼ 0.6). We also found that PM generated by flaming combustion generates more radicals with higher OP-DTT compared to those by smoldering or pyrolysis. 
    more » « less
  2. Abstract. Aerosol liquid water (ALW) is a unique reaction medium,but its chemistry is poorly understood. For example, little is known of photooxidant concentrations – including hydroxyl radicals (OH), singlet molecular oxygen (1O2*), and oxidizing triplet excited states of organic matter (3C*) – even though they likely drive much of ALW chemistry. Due to the very limited water content of particles, it is difficult to quantify oxidant concentrations in ALW directly. To predict these values, we measured photooxidant concentrations in illuminated aqueous particle extracts as a function of dilution and used the resulting oxidant kinetics to extrapolate to ALW conditions. We prepared dilution series from two sets of particles collected in Davis, California: one from winter (WIN)and one from summer (SUM). Both periods are influenced by biomass burning,with dissolved organic carbon (DOC) in the extracts ranging from 10 to 495 mg C L−1. In the winter sample, the OH concentration is independent of particle mass concentration, with an average value of 5.0 (± 2.2) × 10−15 M, while in summer OH increases with DOC in the range (0.4–7.7) × 10−15 M. In both winter and summer samples, 3C* concentrations increase rapidly with particle mass concentrations in the extracts and then plateau under more concentrated conditions, with a range of (0.2–7) × 10−13 M.WIN and SUM have the same range of 1O2* concentrations, (0.2–8.5) × 10−12 M, but in WIN the 1O2* concentration increases linearly with DOC, while in SUM 1O2* approaches a plateau. We next extrapolated the relationships of oxidant formation rates and sinks as a function of particle mass concentration from our dilute extracts to the much more concentrated condition of aerosol liquid water. Predicted OH concentrations in ALW (including mass transport of OH from the gas phase) are (5–8) × 10−15 M, similar to those in fog/cloud waters. In contrast, predicted concentrations of 3C* and1O2* in ALW are approximately 10 to 100 times higher than in cloud/fogs, with values of (4–9) × 10−13 M and (1–5) × 10−12 M, respectively. Although OH is often considered the main sink for organic compounds in the atmospheric aqueous phase, the much higher concentrations of 3C* and 1O2* in aerosol liquid water suggest these photooxidants will be more important sinks for many organics in particle water. 
    more » « less
  3. The sulfate anion radical (SO 4 •– ) is known to be formed in the autoxidation chain of sulfur dioxide and from minor reactions when sulfate or bisulfate ions are activated by OH radicals, NO 3 radicals, or iron. Here, we report a source of SO 4 •– , from the irradiation of the liquid water of sulfate-containing organic aerosol particles under natural sunlight and laboratory UV radiation. Irradiation of aqueous sulfate mixed with a variety of atmospherically relevant organic compounds degrades the organics well within the typical lifetime of aerosols in the atmosphere. Products of the SO 4 •– + organic reaction include surface-active organosulfates and small organic acids, alongside other products. Scavenging and deoxygenated experiments indicate that SO 4 •– radicals, instead of OH, drive the reaction. Ion substitution experiments confirm that sulfate ions are necessary for organic reactivity, while the cation identity is of low importance. The reaction proceeds at pH 1–6, implicating both bisulfate and sulfate in the formation of photoinduced SO 4 •– . Certain aromatic species may further accelerate the reaction through synergy. This reaction may impact our understanding of atmospheric sulfur reactions, aerosol properties, and organic aerosol lifetimes when inserted into aqueous chemistry model mechanisms. 
    more » « less
  4. Cooperativity and non-additive interactions play central roles in the unusual and surprising behavior of water. A host of reactive oxygen species (ROS) including the hydroxyl radical •OH, superoxide radical anion (O2–•), hydroperoxide radical (HO2•), singlet oxygen (1O2), and also the more recently discussed water radical cation/anion pair (H2O+•/H2O–•) all add to the more familiar acid/base chemical pathways tread by hydronium (H3O+) and hydroxide (OH–). This is amplified in surface science because interfacial water – whether found at the gas/liquid, gas/solid, or liquid/solid interface – poses yet more unique behavior. This review explores the unexpected chemistry associated with ambient temperature aqueous interfaces much of which is mediated not only by ions and neutrals as expected, but also radical species. Water microdroplets catalyze numerous reactions and can also support simultaneous oxidation and reduction reactions through the production of reactive intermediates that owe their existence to the unique influence of the air/water or oil/water interface. Interfacial water influences and is influenced by the ubiquitous phenomenon of contact electrification, a manifestation of spontaneous symmetry breaking. The mechanisms of chemistry not only on and in microdroplets but also at the gas/solid and liquid/solid interfaces rely on a broad set of chemical transformations mediated by radicals. Furthermore, because aqueous macro- and micro-interfaces are ubiquitous on Earth, we find that water radical-mediated chemistry has applications to atmospheric chemistry, geochemistry, mineral weathering, pre-biotic chemistry, enhanced enzyme performance, wastewater remediation, public health, mechanochemistry, and potentially novel routes to pharmaceuticals. 
    more » « less
  5. null (Ed.)
    One of the research priorities in atmospheric chemistry is to advance our understanding of heterogeneous reactions and their effect on the composition of the troposphere. Chemistry on aqueous surfaces is particularly important because of their ubiquity and expanse. They range from the surfaces of oceans (360 million km2), cloud and aerosol drops (estimated at ~10 trillion km2) to the fluid lining the human lung (~150 m2). Typically, ambient air contains reactive gases that may affect human health, influence climate and participate in biogeochemical cycles. Despite their importance, atmospheric reactions between gases and solutes on aqueous surfaces are not well understood and, as a result, generally overlooked. New, surface-specific techniques are required that detect and identify the intermediates and products of such reactions as they happen on liquids. This is a tall order because genuine interfacial reactions are faster than mass diffusion into bulk liquids, and may produce novel species in low concentrations. Herein, we review evidence that validates online pneumatic ionization mass spectrometry of liquid microjets exposed to reactive gases as a technique that meets such requirements. Next, we call attention to results obtained by this approach on reactions of gas-phase ozone, nitrogen dioxide and hydroxyl radicals with various solutes on aqueous surfaces. The overarching conclusion is that the outermost layers of aqueous solutions are unique media, where most equilibria shift and reactions usually proceed along new pathways, and generally faster than in bulk water. That the rates and mechanisms of reactions at air-aqueous interfaces may be different from those in bulk water opens new conceptual frameworks and lines of research, and adds a missing dimension to atmospheric chemistry. 
    more » « less