This research paper analyzes the emotions that students experience while completing ill-defined complex problems called Open-Ended Modeling Problems in their engineering courses. Students are asked to make their own modeling decisions, rather than being given those assumptions, as is the case in most textbook problems. There are many approaches they can take, and having to make decisions and assumptions that impact the problem has been found to generate strong emotions. Goldin’s research on mathematics education asserts that students tend toward affective pathways while completing problems. An affective pathway is the sequence of emotions that a student goes through while solving a problem. Goldin theorizes that there are two main categories of affective pathways that students fall into: positive pathways and negative pathways. This paper builds on our previous work on the development of a survey instrument to quantitatively measure affective pathways. The survey asked students to drag and drop emotions into the order they experienced them during their problem solving process. In this study, we sought to improve upon our survey instrument. Based on our previous research, we added several emotions and alphabetized the list to see whether the order of words impacted the responses. Here, we examine the results from an updated survey question as well as a small set of interviews conducted to investigate how students approach answering the survey question by having them think aloud while completing it. The survey was sent to six classes at five universities, and interviews were conducted with six students at two of those universities. Through our analysis, we found that most students feel confused or frustrated at some stage, and that their emotions change as they continue from start to finish, which is in line with the findings of the previous version of the survey instrument. We are looking further into whether the students turned their frustrations into the positive or negative pathways that Goldin describes. From the interviews, we found most of the verbalized pathways matched what was submitted through the survey instrument. However, there were instances where the submitted and verbalized pathway did not match, suggesting further changes to the question’s implementation. Developing a reliable method for measuring affective pathways will enable future study of why and when positive or negative pathways occur, as well as potential actions that engineering educators can take to help students interrupt negative pathways. Goldin’s work suggests that negative pathways influence students’ global affect, which could impact retention in engineering.
more »
« less
Engineering students' epistemic affect and meta‐affect in solving ill‐defined problems
Abstract BackgroundReal‐world engineering problems are ill‐defined and complex, and solving them may arouse negative epistemic affect (feelings experienced within problem‐solving). These feelings fall into sequenced patterns (affective pathways). Over time, these patterns can alter students' attitudes toward engineering. Meta‐affect (affect or cognition about affect) can shape or reframe affective pathways, changing a student's problem‐solving experience. Purpose/Hypothesis(es)This paper examines epistemic affect and meta‐affect in undergraduate students solving ill‐defined problems called open‐ended modeling problems (OEMPs), addressing two research questions: What epistemic affect and transitions between different affective states do students report? And, how does meta‐affect shape students' affective experiences? Design/MethodWe examined 11 retrospective interviews with nine students performed across two semesters in which students completed OEMPs. Using inductive and deductive coding with discourse analysis, we systematically searched for expressions conveying epistemic affect and for transitions in affect; we performed additional deductive coding of the transcripts for meta‐affect and synthesized these results to formulate narratives related to affect and meta‐affect. ResultsTogether, the expressions, transitions, and meta‐affect suggest different types of student experiences. Depending on their meta‐affect, students either recounted experiences dominated by positive or negative affect, or else they experienced negative emotions as productive. ConclusionsIll‐defined complex problems elicit a wide range of positive and negative emotions and provide opportunities to practice affective regulation and productive meta‐affect. Viewing the OEMPs as authentic disciplinary experiences and/or the ability to view negative emotions as productive can enable overall positive experiences. Our results provide insight into how instructors can foster positive affective pathways through problem‐scaffolding or their interactions with students.
more »
« less
- Award ID(s):
- 2204726
- PAR ID:
- 10500672
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Engineering Education
- Volume:
- 113
- Issue:
- 2
- ISSN:
- 1069-4730
- Format(s):
- Medium: X Size: p. 280-307
- Size(s):
- p. 280-307
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this research paper, we sought to understand how meta-affect influences the strength of engineering identity in first-year students, since strong engineering identity is correlated with retention. Meta-affect refers to affect about affect, cognition about affect, and monitoring of affect. Goldin’s research on meta-affect has suggested that there is a cycle wherein students’ beliefs establish meta-affective contexts that in turn shape the experience of affective pathways. We analyzed transcripts of interviews conducted with students during their first year in an engineering program. The primary goal of the interviews was to gain insight into engineering students’ affect towards math, science, and engineering and their engineering identity. For this comparative case study, we focus on three students with different engineering identities. Our goal was to investigate and provide evidence for the trends and relationships between beliefs, meta-affective-context, and affect and their influence on engineering identity. We found relationships between meta-affect and engineering identity related to specific beliefs: beliefs concerning getting help, the challenges of engineering, and performance ability. These relationships had different implications for the students’ identities depending on the students’ meta-affective contexts and affect. Understanding the relationship between these factors can help instructors promote more productive beliefs and meta-affect. This could potentially help strengthen engineering identity and increase retention of students within engineering.more » « less
-
Science Education has transitioned to science proficiency-- students are to gain the ability to engage in sense making about the natural world (National Research Council [NRC, 2012])--learning to “figure things out” (Passmore, 2014). One emerging area of focus is the emotional work students participate in during science sense making. There is growing recognition that these emotions are not just unnecessary by-products of scientific work, but rather they are part-and-parcel of doing science, as these emotions are part of what “instigates and stabilizes disciplinary engagement” in scientific pursuits (Jaber & Hammer, 2016b, p. 189). The research question that guided this study is: What is the teacher's role in reframing moments of epistemic vexation, so students experience productive meta-affect in the science classroom? After reviewing video footage and student and teacher interviews, three themes emerged: (1) Without reframing from the teacher during moments of epistemic vexation, students disengage from sense-making, (2) Productive meta-affect is more likely to occur when students understand why the teacher allows for failure to connect ideas or understand scientific concepts, and (3) When the teacher does not reframe moments of epistemic vexation, students build solidarity and reach out to each other for emotional support in developing productive meta-affect.more » « less
-
Drayton, L (Ed.)Scholars have argued for centuries that affective states involve interoception, or representations of the state of the body. Yet, we lack a mechanistic understanding of how signals from the body are transduced, transmitted, compressed, and integrated by the brains of humans to produce affective states. We suggest that to understand how the body contributes to affect, we first need to understand information flow through the nervous system’s interoceptive pathways. We outline such a model and discuss how unique anatomical and physiological aspects of interoceptive pathways may give rise to the qualities of affective experiences in general and valence and arousal in particular. We conclude by considering implications and future directions for research on interoception, affect, emotions, and human mental experiences.more » « less
-
Research on students’ engagement suggests that epistemic affect--that is, the feelings and emotions experienced in the epistemic work of making sense of phenomena-- should be recognized as a central component of meaningful disciplinary engagement in science. These feelings and emotions are not tangential by-products, but are essential components of disciplinary engagement. Yet, there is still much to understand about how educators can attend and respond to students’ emotions in ways that support disciplinary engagement in science. To inform these efforts, we follow one high school Biology teacher, Amelia, to answer the following question: How does Amelia attend to and support her students’ emotions in ways that support their disciplinary engagement? Data examined include teacher interviews and classroom recordings of two multi-day science lessons. We found that the teacher worked to support her students’ emotions in moments of uncertainty in at least two ways: (1) by attending to these emotions directly, and (2) by sharing her personal experiences and feelings in engaging in similar activities as a science learner. We describe how Amelia made herself vulnerable to students, describing her own struggles in making sense of phenomena, in turn supporting her students to normalize these experiences as part of doing science.more » « less
An official website of the United States government
