skip to main content


Title: The Carbon Isotopic Ratio and Planet Formation
Abstract

We present the first detection of13CCH in a protoplanetary disk (TW Hya). Using observations of C2H, we measure CCH/13CCH = 65 ± 20 gas with a CO isotopic ratio of12CO/13CO = 21 ± 5. The TW Hya disk exhibits a gas phase C/O that exceeds unity, and C2H is the tracer of this excess carbon. We confirm that the TW Hya gaseous disk exhibits two separate carbon isotopic reservoirs, as noted previously. We explore two theoretical solutions for the development of this dichotomy. One model represents TW Hya today with a protoplanetary disk exposed to a cosmic-ray ionization rate that is below interstellar as consistent with current estimates. We find that this model does not have sufficient ionization in cold (T< 40 K) layers to activate carbon isotopic fractionation. The second model investigates a younger TW Hya protostellar disk exposed to an interstellar cosmic-ray ionization rate. We find that the younger model has sources of ionization deeper in a colder disk that generates two independent isotopic reservoirs. One reservoir is12C-enriched carried by methane/hydrocarbon ices, and the other is13C-enriched carried by gaseous CO. The former potentially provides a source of methane/hydrocarbon ices to power the chemistry that generates the anomalously strong C2H emission in this (and other) disk systems in later stages. The latter provides a source of gaseous13C-rich material to generate isotopic enrichments in forming giant planets, as recently detected in the super-Jupiter TYC 8998-760-1 b by Zhang et al.

 
more » « less
NSF-PAR ID:
10500827
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
965
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 147
Size(s):
["Article No. 147"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The dominant form of oxygen in cold molecular clouds is gas-phase carbon monoxide (CO) and ice-phase water (H2O). Yet, in planet-forming disks around young stars, gas-phase CO and H2O are less abundant relative to their interstellar medium values, and no other major oxygen-carrying molecules have been detected. Some astrochemical models predict that gas-phase molecular oxygen (O2) should be a major carrier of volatile oxygen in disks. We report a deep search for emission from the isotopologue16O18O (NJ= 21− 01line at 233.946 GHz) in the nearby protoplanetary disk around TW Hya. We used imaging techniques and matched filtering to search for weak emission but do not detect16O18O. Based on our results, we calculate upper limits on the gas-phase O2abundance in TW Hya of (6.4–70) × 10−7relative to H, which is 2–3 orders of magnitude below solar oxygen abundance. We conclude that gas-phase O2is not a major oxygen carrier in TW Hya. Two other potential oxygen-carrying molecules, SO and SO2, were covered in our observations, which we also do not detect. Additionally, we report a serendipitous detection of the C15NNJ= 25/2− 13/2hyperfine transitions,F= 3 − 2 andF= 2 − 1, at 219.9 GHz, which we found via matched filtering and confirm through imaging.

     
    more » « less
  2. Abstract

    We present high-resolutionK-band emission spectra of the quintessential hot Jupiter HD 189733 b from the Keck Planet Imager and Characterizer. Using a Bayesian retrieval framework, we fit the dayside pressure–temperature profile, orbital kinematics, mass-mixing ratios of H2O, CO, CH4, NH3, HCN, and H2S, and the13CO/12CO ratio. We measure mass fractions oflogH2O=2.00.4+0.4andlogCO=2.20.5+0.5, and place upper limits on the remaining species. Notably, we find logCH4< −4.5 at 99% confidence, despite its anticipated presence at the equilibrium temperature of HD 189733 b assuming local thermal equilibrium. We make a tentative (∼3σ) detection of13CO, and the retrieved posteriors suggest a12C/13C ratio similar to or substantially less than the local interstellar value. The possible13C enrichment would be consistent with accretion of fractionated material in ices or in the protoplanetary disk midplane. The retrieved abundances correspond to a substantially substellar atmospheric C/O = 0.3 ± 0.1, while the carbon and oxygen abundances are stellar to slightly superstellar, consistent with core-accretion models which predict an inverse correlation between C/O and metallicity. The specific combination of low C/O and high metallicity suggests significant accretion of solid material may have occurred late in the formation process of HD 189733 b.

     
    more » « less
  3. Abstract

    The formation of complex organic molecules by simulated secondary electrons generated in the track of galactic cosmic rays was investigated in interstellar ice analogs composed of methanol and carbon dioxide. The processed ices were subjected to temperature-programmed desorption to mimic the transition of a cold molecular cloud to a warmer star-forming region. Reaction products were detected as they sublime using photoionization reflectron time-of-flight mass spectrometry. By employing isotopic labeling, tunable photoionization and computed adiabatic ionization energies isomers of C2H4O3were investigated. Product molecules carbonic acid monomethyl ester (CH3OCOOH) and glycolic acid (HOCH2COOH) were identified. The abundance of the reactants detected in analog interstellar ices and the low irradiation dose necessary to form these products indicates that these molecules are exemplary candidates for interstellar detection. Molecules sharing a tautomeric relationship with glycolic acid, dihydroxyacetaldehyde ((OH)2CCHO), and the enol ethenetriol (HOCHC(OH)2), were not found to form despite ices being subjected to conditions that have successfully produced tautomerization in other ice analog systems.

     
    more » « less
  4. Abstract

    We present Keck Planet Imager and Characterizer (KPIC) high-resolution (R∼35,000)K-band thermal emission spectroscopy of the ultrahot Jupiter WASP-33b. The use of KPIC’s single-mode fibers greatly improves both blaze and line-spread stabilities relative to slit spectrographs, enhancing the cross-correlation detection strength. We retrieve the dayside emission spectrum with a nested-sampling pipeline, which fits for orbital parameters, the atmospheric pressure–temperature profile, and the molecular abundances. We strongly detect the thermally inverted dayside and measure mass-mixing ratios for CO (logCOMMR=1.10.6+0.4), H2O (logH2OMMR=4.10.9+0.7), and OH (logOHMMR=2.11.1+0.5), suggesting near-complete dayside photodissociation of H2O. The retrieved abundances suggest a carbon- and possibly metal-enriched atmosphere, with a gas-phase C/O ratio of0.80.2+0.1, consistent with the accretion of high-metallicity gas near the CO2snow line and post-disk migration or with accretion between the soot and H2O snow lines. We also find tentative evidence for12CO/13CO ∼ 50, consistent with values expected in protoplanetary disks, as well as tentative evidence for a metal-enriched atmosphere (2–15 × solar). These observations demonstrate KPIC’s ability to characterize close-in planets and the utility of KPIC’s improved instrumental stability for cross-correlation techniques.

     
    more » « less
  5. Abstract

    Deuterium fractionation provides a window into the thermal history of volatiles in the solar system and protoplanetary disks. While evidence of active molecular deuteration has been observed toward a handful of disks, it remains unclear whether this chemistry affects the composition of forming planetesimals due to limited observational constraints on the radial and vertical distribution of deuterated molecules. To shed light on this question, we introduce new Atacama Large Millimeter/submillimeter Array observations of DCO+and DCNJ= 2–1 at an angular resolution of 0.″5 (30 au) and combine them with archival data of higher energy transitions toward the protoplanetary disk around TW Hya. We carry out a radial excitation analysis assuming both LTE and non-LTE to localize the physical conditions traced by DCO+and DCN emission in the disk, thus assessing deuterium fractionation efficiencies and pathways at different disk locations. We find similar disk-averaged column densities of 1.9 × 1012and 9.8 × 1011cm−2for DCO+and DCN, with typical kinetic temperatures for both molecules of 20–30 K, indicating a common origin near the comet- and planet-forming midplane. The observed DCO+/DCN abundance ratio, combined with recent modeling results, provide tentative evidence of a gas-phase C/O enhancement within <40 au. Observations of DCO+and DCN in other disks, as well as HCN and HCO+, will be necessary to place the trends exhibited by TW Hya in context, and fully constrain the main deuteration mechanisms in disks.

     
    more » « less