Abstract The skew mean curvature flow is an evolution equation forddimensional manifolds embedded in$${{\mathbb {R}}}^{d+2}$$ (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension$$d\ge 4$$ . 
                        more » 
                        « less   
                    
                            
                            Isometric Immersions and the Waving of Flags
                        
                    
    
            Abstract In this article we propose a novel geometric model to study the motion of a physical flag. In our approach, a flag is viewed as an isometric immersion from the square with values in$$\mathbb {R}^3$$ satisfying certain boundary conditions at the flag pole. Under additional regularity constraints we show that the space of all such flags carries the structure of an infinite dimensional manifold and can be viewed as a submanifold of the space of all immersions. In the second part of the article we equip the space of isometric immersions with its natural kinetic energy and derive the corresponding equations of motion. This approach can be viewed in a spirit similar to Arnold’s geometric picture for the motion of an incompressible fluid. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1953244
- PAR ID:
- 10500851
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Archive for Rational Mechanics and Analysis
- Volume:
- 248
- Issue:
- 3
- ISSN:
- 0003-9527
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract In this paper, we present counterexamples to maximal$$L^p$$ -regularity for a parabolic PDE. The example is a second-order operator in divergence form with space and time-dependent coefficients. It is well-known from Lions’ theory that such operators admit maximal$$L^2$$ -regularity on$$H^{-1}$$ under a coercivity condition on the coefficients, and without any regularity conditions in time and space. We show that in general one cannot expect maximal$$L^p$$ -regularity on$$H^{-1}(\mathbb {R}^d)$$ or$$L^2$$ -regularity on$$L^2(\mathbb {R}^d)$$ .more » « less
- 
            Abstract Physical experiments and numerical simulations have observed a remarkable stabilizing phenomenon: a background magnetic field stabilizes and dampens electrically conducting fluids. This paper intends to establish this phenomenon as a mathematically rigorous fact on a magnetohydrodynamic (MHD) system with anisotropic dissipation in$$\mathbb R^3$$ . The velocity equation in this system is the 3D Navier–Stokes equation with dissipation only in the$$x_1$$ -direction, while the magnetic field obeys the induction equation with magnetic diffusion in two horizontal directions. We establish that any perturbation near the background magnetic field (0, 1, 0) is globally stable in the Sobolev setting$$H^3({\mathbb {R}}^3)$$ . In addition, explicit decay rates in$$H^2({\mathbb {R}}^3)$$ are also obtained. For when there is no presence of a magnetic field, the 3D anisotropic Navier–Stokes equation is not well understood and the small data global well-posedness in$$\mathbb R^3$$ remains an intriguing open problem. This paper reveals the mechanism of how the magnetic field generates enhanced dissipation and helps to stabilize the fluid.more » « less
- 
            Abstract We construct a new one-parameter family, indexed by$$\epsilon $$ , of two-ended, spatially-homogeneous black hole interiors solving the Einstein–Maxwell–Klein–Gordon equations with a (possibly zero) cosmological constant$$\Lambda $$ and bifurcating off a Reissner–Nordström-(dS/AdS) interior ($$\epsilon =0$$ ). For all small$$\epsilon \ne 0$$ , we prove that, although the black hole is charged, its terminal boundary is an everywhere-spacelikeKasner singularity foliated by spheres of zero radiusr. Moreover, smaller perturbations (i.e. smaller$$|\epsilon |$$ ) aremore singular than larger ones, in the sense that the Hawking mass and the curvature blow up following a power law of the form$$r^{-O(\epsilon ^{-2})}$$ at the singularity$$\{r=0\}$$ . This unusual property originates from a dynamical phenomenon—violent nonlinear collapse—caused by the almost formation of a Cauchy horizon to the past of the spacelike singularity$$\{r=0\}$$ . This phenomenon was previously described numerically in the physics literature and referred to as “the collapse of the Einstein–Rosen bridge”. While we cover all values of$$\Lambda \in \mathbb {R}$$ , the case$$\Lambda <0$$ is of particular significance to the AdS/CFT correspondence. Our result can also be viewed in general as a first step towards the understanding of the interior of hairy black holes.more » « less
- 
            Abstract The skew mean curvature flow is an evolution equation forddimensional manifolds embedded in$${\mathbb {R}}^{d+2}$$ (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In an earlier paper, the authors introduced a harmonic/Coulomb gauge formulation of the problem, and used it to prove small data local well-posedness in dimensions$$d \geqq 4$$ . In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension$$d\geqq 2$$ . This is achieved by introducing a new, heat gauge formulation of the equations, which turns out to be more robust in low dimensions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
