Microstructure evolution modeling using finite element crystal plasticity (FECP), Monte- Carlo (MC), and phase field (PF) methods are being used to simulate microstructure evolution in Ti-6Al-4V under thermomechanical loading conditions. FECP is used to simulate deformation induced evolution of the microstructure and compute heterogeneous stored energy providing additional source of energy to MC and PF models. The MC grain growth model, calibrated using literature and experimental data, is used to simulate α+𝛽 grain growth. A multi-phase field, augmented with crystallographic symmetry and orientation relationship between α-𝛽, is employed to model simultaneous evolution and growth of all twelve α-variants in 3D. The influence of transformation and coherency strain energy on α-variant selection is studied by coupling the model with the Khachaturyan-Shatalov formalism for elastic strain calculation. This FECP/MC/PF suite will be able to simulate evolution of grains in the microstructure and within individual 𝛽- grains during typical thermomechanical processing conditions.
more »
« less
Phase-field modeling of stored-energy-driven grain growth with intra-granular variation in dislocation density
Abstract We present a phase-field (PF) model to simulate the microstructure evolution occurring in polycrystalline materials with a variation in the intra-granular dislocation density. The model accounts for two mechanisms that lead to the grain boundary migration: the driving force due to capillarity and that due to the stored energy arising from a spatially varying dislocation density. In addition to the order parameters that distinguish regions occupied by different grains, we introduce dislocation density fields that describe spatial variation of the dislocation density. We assume that the dislocation density decays as a function of the distance the grain boundary has migrated. To demonstrate and parameterize the model, we simulate microstructure evolution in two dimensions, for which the initial microstructure is based on real-time experimental data. Additionally, we applied the model to study the effect of a cyclic heat treatment (CHT) on the microstructure evolution. Specifically, we simulated stored-energy-driven grain growth during three thermal cycles, as well as grain growth without stored energy that serves as a baseline for comparison. We showed that the microstructure evolution proceeded much faster when the stored energy was considered. A non-self-similar evolution was observed in this case, while a nearly self-similar evolution was found when the microstructure evolution is driven solely by capillarity. These results suggest a possible mechanism for the initiation of abnormal grain growth during CHT. Finally, we demonstrate an integrated experimental-computational workflow that utilizes the experimental measurements to inform the PF model and its parameterization, which provides a foundation for the development of future simulation tools capable of quantitative prediction of microstructure evolution during non-isothermal heat treatment.
more »
« less
- Award ID(s):
- 2104786
- PAR ID:
- 10500878
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Modelling and Simulation in Materials Science and Engineering
- Volume:
- 32
- Issue:
- 4
- ISSN:
- 0965-0393
- Format(s):
- Medium: X Size: Article No. 045011
- Size(s):
- Article No. 045011
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A continuum grain boundary model is developed, which uses experimentally measured grain boundary energy data as a function of misorientation to simulate idealized grain boundary evolution in a one-dimensional (1D) grain array. The model uses a continuum representation of the misorientation in terms of spatial gradients of the orientation as a fundamental field. The grain boundary energy density employed is non-convex in this orientation gradient, based on physical grounds. Simple gradient descent dynamics of the energy are utilized for idealized microstructure evolution, which requires higher-order regularization of the energy density for the model to be well set; the regularization is physically justified. Microstructure evolution is presented using two plausible energy density functions, both defined from the same experimental data: a “smooth” and a “cusp” energy density. Results of grain boundary equilibria and microstructure evolution representing grain reorientation in 1D are presented. The different shapes of the energy density functions representing a common data set are shown to result in different overall microstructural evolution of the system. Mathematically, the constructed energy functional formally is of the Aviles–Giga/Cross–Newell type but with unequal well depths, resulting in a difference in the structural feature of solutions that can be identified with grain boundaries, as well as in the approach to equilibria from identical initial conditions. This study also investigates the metastability of grain boundaries. It supports the general thermodynamics belief that they persist for extended periods before eventually vanishing due to the lowest energy configuration favored by fluctuations over infinite time.more » « less
-
A novel dislocation-density-based crystal plasticity model for nanocrystalline face-centered cubic metals is developed based on the thermally-activated mechanism of dislocations depinning from grain boundaries. Dislocations nucleated from grain boundary dislocation sources are assumed to be the primary carriers of plasticity in the nanocrystals. The evolution of the dislocation density thereby involves a competition between the nucleation of dislocations from grain boundary defect structures, such as ledges, and the absorption of dislocations into the grain boundary via diffusion processes. This model facilitates the simulation of plastic deformation in nanocrystalline metals, with consideration of the initial microstructure resulting from a particular processing method, to be computed as a direct result of dislocation-mediated plasticity only. The exclusion of grain boundary-mediated plasticity mechanisms in the formulation of the crystal plasticity model allows for the exploration of the fundamental role dislocations play in nanocrystalline plasticity. The combined effect of average grain size, grain size distribution shape, and initial dislocation density on the mechanical performance and strain-rate sensitivity are explored with the model. Further, the influence of the grain boundary diffusivity on post-yielding strain-hardening behavior is investigated to discern the impact that the choice of processing route has on the resulting deformation response of the material.more » « less
-
Grain growth in polycrystals is traditionally considered a capillarity-driven process, where grain boundaries (GBs) migrate toward their centers of curvature (i.e., mean curvature flow) with a velocity proportional to the local curvature (including extensions to account for anisotropic GB energy and mobility). Experimental and simulation evidence shows that this simplistic view is untrue. We demonstrate that the failure of the classical mean curvature flow description of grain growth mainly originates from the shear deformation naturally coupled with GB motion (i.e., shear coupling). Our findings are built on large-scale microstructure evolution simulations incorporating the fundamental (crystallography-respecting) microscopic mechanism of GB migration. The nature of the deviations from curvature flow revealed in our simulations is consistent with observations in recent experimental studies on different materials. This work also demonstrates how to incorporate the mechanical effects that are essential to the accurate prediction of microstructure evolution.more » « less
-
The sensitivity of recrystallization kinetics in metals to the heterogeneity of microstructure and deformation history is a widely accepted experimental fact. However, most of the available recrystallization models employ either a mean field approach or use grain-averaged parameters, and thus neglecting the mesoscopic heterogeneity induced by prior deformation. In the present study, we investigate the impact of deformation-induced dislocation (subgrain) structure on the kinetics of recrystallization in metals using the phase-field approach. The primary focus here is upon the role of dislocation cell boundaries. The free energy formulation of the phase-field model accounts for the heterogeneity of the microstructure by assigning localized energy to the resulting dislocation microstructure realizations generated from experimental data. These microstructure realizations are created using the universal scaling laws for the spacing and the misorientation angles of both the geometrically necessary and incidental dislocation boundaries. The resulting free energy is used into an Allen-Cahn based model of recrystallization kinetics, which are solved using the finite element method. The solutions thus obtained shed light on the critical role of the spatial heterogeneity of deformation in the non-smooth growth of recrystallization nuclei and on the final grain structure. The results showed that, in agreement with experiment, the morphology of recrystallization front exhibits protrusions and retrusions. By resolving the subgrain structure, the presented algorithm paves the way for developing predictive kinetic models that fully account for the deformed state of recrystallizing metals.more » « less
An official website of the United States government
