skip to main content

This content will become publicly available on March 25, 2025

Title: Chasing Fairness in Graphs: A GNN Architecture Perspective

There has been significant progress in improving the performance of graph neural networks (GNNs) through enhancements in graph data, model architecture design, and training strategies. For fairness in graphs, recent studies achieve fair representations and predictions through either graph data pre-processing (e.g., node feature masking, and topology rewiring) or fair training strategies (e.g., regularization, adversarial debiasing, and fair contrastive learning). How to achieve fairness in graphs from the model architecture perspective is less explored. More importantly, GNNs exhibit worse fairness performance compared to multilayer perception since their model architecture (i.e., neighbor aggregation) amplifies biases. To this end, we aim to achieve fairness via a new GNN architecture. We propose Fair Message Passing (FMP) designed within a unified optimization framework for GNNs. Notably, FMP explicitly renders sensitive attribute usage in forward propagation for node classification task using cross-entropy loss without data pre-processing. In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.In this way, FMP scheme can aggregate useful information from neighbors and mitigate bias to achieve better fairness and prediction tradeoff performance. Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets. The code is available at

more » « less
Award ID(s):
1939716 2239257
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Page Range / eLocation ID:
21214 to 21222
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph Neural Networks (GNNs) have shown great power in learning node representations on graphs. However, they may inherit historical prejudices from training data, leading to discriminatory bias in predictions. Although some work has developed fair GNNs, most of them directly borrow fair representation learning techniques from non-graph domains without considering the potential problem of sensitive attribute leakage caused by feature propagation in GNNs. However, we empirically observe that feature propagation could vary the correlation of previously innocuous non-sensitive features to the sensitive ones. This can be viewed as a leakage of sensitive information which could further exacerbate discrimination in predictions. Thus, we design two feature masking strategies according to feature correlations to highlight the importance of considering feature propagation and correlation variation in alleviating discrimination. Motivated by our analysis, we propose Fair View Graph Neural Network (FairVGNN) to generate fair views of features by automatically identifying and masking sensitive-correlated features considering correlation variation after feature propagation. Given the learned fair views, we adaptively clamp weights of the encoder to avoid using sensitive-related features. Experiments on real-world datasets demonstrate that FairVGNN enjoys a better trade-off between model utility and fairness. 
    more » « less
  2. null (Ed.)
    Graph neural networks (GNNs) are important tools for transductive learning tasks, such as node classification in graphs, due to their expressive power in capturing complex interdependency between nodes. To enable GNN learning, existing works typically assume that labeled nodes, from two or multiple classes, are provided, so that a discriminative classifier can be learned from the labeled data. In reality, this assumption might be too restrictive for applications, as users may only provide labels of interest in a single class for a small number of nodes. In addition, most GNN models only aggregate information from short distances ( e.g. , 1-hop neighbors) in each round, and fail to capture long-distance relationship in graphs. In this article, we propose a novel GNN framework, long-short distance aggregation networks, to overcome these limitations. By generating multiple graphs at different distance levels, based on the adjacency matrix, we develop a long-short distance attention model to model these graphs. The direct neighbors are captured via a short-distance attention mechanism, and neighbors with long distance are captured by a long-distance attention mechanism. Two novel risk estimators are further employed to aggregate long-short-distance networks, for PU learning and the loss is back-propagated for model learning. Experimental results on real-world datasets demonstrate the effectiveness of our algorithm. 
    more » « less
  3. Graph Neural Networks (GNNs) are based on repeated aggregations of information from nodes’ neighbors in a graph. However, because nodes share many neighbors, a naive implementation leads to repeated and inefficient aggregations and represents significant computational overhead. Here we propose Hierarchically Aggregated computation Graphs (HAGs), a new GNN representation technique that explicitly avoids redundancy by managing intermediate aggregation results hierarchically and eliminates repeated computations and unnecessary data transfers in GNN training and inference. HAGs perform the same computations and give the same models/accuracy as traditional GNNs, but in a much shorter time due to optimized computations. To identify redundant computations, we introduce an accurate cost function and use a novel search algorithm to find optimized HAGs. Experiments show that the HAG representation significantly outperforms the standard GNN by increasing the end-to-end training throughput by up to 2.8× and reducing the aggregations and data transfers in GNN training by up to 6.3× and 5.6×, with only 0.1% memory overhead. Overall, our results represent an important advancement in speeding-up and scaling-up GNNs without any loss in model predictive performance. 
    more » « less
  4. Towards the challenging problem of semi-supervised node classification, there have been extensive studies. As a frontier, Graph Neural Networks (GNNs) have aroused great interest recently, which update the representation of each node by aggregating information of its neighbors. However, most GNNs have shallow layers with a limited receptive field and may not achieve satisfactory performance especially when the number of labeled nodes is quite small. To address this challenge, we innovatively propose a graph few-shot learning (GFL) algorithm that incorporates prior knowledge learned from auxiliary graphs to improve classification accuracy on the target graph. Specifically, a transferable metric space characterized by a node embedding and a graph-specific prototype embedding function is shared between auxiliary graphs and the target, facilitating the transfer of structural knowledge. Extensive experiments and ablation studies on four real-world graph datasets demonstrate the effectiveness of our proposed model and the contribution of each component. 
    more » « less
  5. While the advent of Graph Neural Networks (GNNs) has greatly improved node and graph representation learning in many applications, the neighborhood aggregation scheme exposes additional vulnerabilities to adversaries seeking to extract node-level information about sensitive attributes. In this paper, we study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data. We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance. Our method creates a strong defense against inference attacks, while only suffering small loss in task performance. Theoretically, we analyze the effectiveness of our framework against a worst-case adversary, and characterize an inherent trade-off between maximizing predictive accuracy and minimizing information leakage. Experiments across multiple datasets from recommender systems, knowledge graphs and quantum chemistry demonstrate that the proposed approach provides a robust defense across various graph structures and tasks, while producing competitive GNN encoders for downstream tasks. 
    more » « less