skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High temperatures and low soil moisture synergistically reduce switchgrass yields from marginal field sites and inhibit fermentation
Abstract ‘Marginal lands’ are low productivity sites abandoned from agriculture for reasons such as low or high soil water content, challenging topography, or nutrient deficiency. To avoid competition with crop production, cellulosic bioenergy crops have been proposed for cultivation on marginal lands, however on these sites they may be more strongly affected by environmental stresses such as low soil water content. In this study we used rainout shelters to induce low soil moisture on marginal lands and determine the effect of soil water stress on switchgrass growth and the subsequent production of bioethanol. Five marginal land sites that span a latitudinal gradient in Michigan and Wisconsin were planted to switchgrass in 2013 and during the 2018–2021 growing seasons were exposed to reduced precipitation under rainout shelters in comparison to ambient precipitation. The effect of reduced precipitation was related to the environmental conditions at each site and biofuel production metrics (switchgrass biomass yields and composition and ethanol production). During the first year (2018), the rainout shelters were designed with 60% rain exclusion, which did not affect biomass yields compared to ambient conditions at any of the field sites, but decreased switchgrass fermentability at the Wisconsin Central–Hancock site. In subsequent years, the shelters were redesigned to fully exclude rainfall, which led to reduced biomass yields and inhibited fermentation for three sites. When switchgrass was grown in soils with large reductions in moisture and increases in temperature, the potential for biofuel production was significantly reduced, exposing some of the challenges associated with producing biofuels from lignocellulosic biomass grown under drought conditions.  more » « less
Award ID(s):
1832042 2224712
PAR ID:
10500914
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
John Wiley & Sons, Ltd
Date Published:
Journal Name:
GCB Bioenergy
Volume:
16
Issue:
2
ISSN:
1757-1693
Page Range / eLocation ID:
e13119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 'Marginal lands' are low productivity sites abandoned from agriculture for reasons such as low or high soil water content, challenging topography, or nutrient deficiency. To avoid competition with crop production, cellulosic bioenergy crops have been proposed for cultivation on marginal lands, however on these sites they may be more strongly affected by environmental stresses such as low soil water content. In this study we used rainout shelters to induce low soil moisture on marginal lands and determine the effect of soil water stress on switchgrass growth and the subsequent production of bioethanol. Five marginal land sites that span a latitudinal gradient in Michigan and Wisconsin were planted to switchgrass in 2013 and during the 2018-2021 growing seasons were exposed to reduced precipitation under rainout shelters in comparison to ambient precipitation. The effect of reduced precipitation was related to the environmental conditions at each site and biofuel production metrics (switchgrass biomass yields and composition and ethanol production). During the first year (2018), the rainout shelters were designed with 60% rain exclusion, which did not affect biomass yields compared to ambient conditions at any of the field sites, but decreased switchgrass fermentability at the Wisconsin Central - Hancock site. In subsequent years, the shelters were redesigned to fully exclude rainfall, which led to reduced biomass yields and inhibited fermentation for three sites. When switchgrass was grown in soils with large reductions in moisture and increases in temperature, the potential for biofuel production was significantly reduced, exposing some of the challenges associated with producing biofuels from lignocellulosic biomass grown under drought conditions. 
    more » « less
  2. null (Ed.)
    ABSTRACT Cellulosic bioenergy crops, like switchgrass (Panicum virgatum), have potential for growth on lands unsuitable for food production coupled with potential for climate mitigation. Sustainability of these systems lies in identifying conditions that promote high biomass yields on marginal lands under low-input agricultural practices. Associative nitrogen fixation (ANF) is a potentially important nitrogen (N) source for these crops, yet ANF contributions to plant N, especially under fertilizer N addition are unclear. In this study, we assess structure (nifH) and function (ANF) of switchgrass root-associated diazotrophic communities to long-term and short-term N additions using soil from three marginal land sites. ANF rates were variable and often unexpectedly high, sometimes 10× greater than reported in the literature, and did not respond in repeatable ways to long-term or short-term N. We found few impacts of N addition on root-associated diazotrophic community structure or membership. Instead, we found a very consistent root-associated diazotrophic community even though switchgrass seeds were germinated in soil from field sites with distinct diazotrophic communities. Ultimately, this work demonstrates that root-associated diazotrophic communities have the potential to contribute to switchgrass N demands, independent of N addition, and this may be driven by selection of the diazotrophic community by switchgrass roots. 
    more » « less
  3. The land systems between the humid and arid zones around the globe are critical to agricultural production and are characterized by a strong integration of the land use and water dynamics. In the southern Great Plains (SGP) of the United States, lakes and farm ponds are essential components in the land systems, and they provide unique habitats for wildlife, and critical water resources for irrigation and municipal water supplies. The conversion of the marginal grasslands to switchgrass (Panicum virgatum) biofuel feedstock for energy production has been proposed in the region. However, we have limited experimental data to assess the impact of this potential land-use change on the surface runoff, which is the primary water source for surface impoundments. Here, we report the results from a paired experimental watershed study that compared the runoff and sediment responses that were related to the conversion of prairie to a low-input biomass production system. The results show no significant change in the relationship between the event-based runoff and the precipitation. There was a substantial increase in the sediment yield (328%) during the conversion phase that was associated with the switchgrass establishment (i.e., the site preparation, herbicide application, and switchgrass planting). Once the switchgrass was established, the sediment yield was 21% lower than the nonconverted watershed. Our site-specific observations suggest that switchgrass biofuel production systems will have a minimum impact on the existing land and water systems. It may potentially serve as an environmentally friendly and economically viable alternative land use for slowing woody encroachment on marginal lands in the SGP. 
    more » « less
  4. Zhang, Wen-Hao (Ed.)
    Abstract Aims Long-term determination of root biomass production upon land-use conversion to biofuel crops is rare. To assess land-use legacy influences on belowground biomass accumulation, we converted 22-year-old Conservation Reserve Program (CRP) grasslands and 50+-year-old agricultural (AGR) lands to corn (C), switchgrass (Sw) and restored prairie (Pr) biofuel crops. We maintained one CRP grassland as a reference (Ref). We hypothesized that land-use history and crop type have significant effects on root density, with perennial crops on CRP grasslands having a higher root biomass productivity, while corn grown on former agricultural lands produce the lowest root biomass. Methods The ingrowth core method was used to determine in situ ingrowth root biomass, alongside measurements of aboveground net primary productivity (ANPP). Ancillary measurements, including air temperature, growing season length and precipitation were used to examine their influences on root biomass production. Important Findings Root biomass productivity was the highest in unconverted CRP grassland (1716 g m−2 yr−1) and lowest in corn fields (526 g m−2 yr−1). All perennial sites converted from CRP and AGR lands had lower root biomass and ANPP in the first year of planting but peaked in 2011 for switchgrass and a year later for restored prairies. Ecosystem stability was higher in restored prairies (AGR-Pr: 4.3 ± 0.11; CRP-Pr: 4.1 ± 0.10), with all monocultures exhibiting a lower stability. Root biomass production was positively related to ANPP (R2 = 0.40). Overall, attention should be given to root biomass accumulation in large-scale biofuel production as it is a major source of carbon sequestration. 
    more » « less
  5. Switchgrass (Panicum virgatum L.) production for biofuel has the potential to produce reasonable yields on lands not suited for conventional agriculture. We assessed nine switchgrass cultivars representing lowland and upland ecotypes grown for 11 years at a site in the upper Midwest USA for belowground differences in soil carbon and nitrogen stocks, soil organic matter fractions, and standing root biomass to 1 m depth. We also compared potential nitrogen mineralization and carbon substrate use through community‐level physiological profiling in surface soils (0–10 cm depth). Average yields and standing root biomass differed among cultivars and between ecotypes, but we found no significant cultivar‐related impacts on soil carbon and nitrogen stocks, on the distribution of particulate and mineral‐associated soil organic matter fractions, nor on potential nitrogen mineralization or microbial community‐level physiological profiles. That these traits did not differ among cultivars suggests that soil carbon and nitrogen gains under switchgrass are likely to be robust with respect to cultivar differences, and to this point not much affected by breeding efforts. 
    more » « less