skip to main content


This content will become publicly available on January 1, 2025

Title: Magnetically-activated, nanostructured cellulose for efficient capture of circulating tumor cells from the blood sample of head and neck cancer patients
In this report, the relative efficiency of cellulose nanocrystals (CNCs) and nanofibers (CNFs) to capture circulating tumor cells (CTCs) from the blood sample of head and neck cancer (HNC) patients was evaluated. Detection and enumeration of CTCs are critical for monitoring cancer progression. Both types of nanostructured cellulose were chemically modified with Epithelial Cell Adhesion Molecule (EpCAM) antibody and iron oxide nanoparticles. The EpCAM antibody facilitated the engagement of CTCs, promoting entrapment within the cellulose cage structure. Iron oxide nanoparticles, on the other hand, rendered the cages activatable via the use of a magnet for the capture and separation of entrapped CTCs. The efficiency of the network structures is shown in head and neck cancer (HNC) patients' blood samples. It was observed that the degree of chemical functionalization of hydroxyl groups located within the CNCs or CNFs with anti-EpCAM determined the efficiency of the system's interaction with CTCs. Further, our result indicated that inflexible scaffolds of nanocrystals interacted more efficiently with CTCs than that of the fibrous CNF scaffolds. Network structures derived from CNCs demonstrated comparable CTC capturing efficiency to commercial standard, OncoDiscover®. The output of the work will provide the chemical design principles of cellulosic materials intended for constructing affordable platforms for monitoring cancer progression in 'real time'.  more » « less
Award ID(s):
2239629
NSF-PAR ID:
10500971
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Carbohydrate polymers
Volume:
323
ISSN:
0144-8617
Page Range / eLocation ID:
121418
Subject(s) / Keyword(s):
["Cancer","Cellulose nanocrystal","Cellulose nanofiber","Circulating tumor cells","Nanostructures"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Advanced materials and chemo-specific designs at the nano/micrometer-scale have ensured revolutionary progress in next-generation clinically relevant technologies. For example, isolating a rare population of cells, like circulating tumor cells (CTCs) from the blood amongst billions of other blood cells, is one of the most complex scientific challenges in cancer diagnostics. The chemical tunability for achieving this degree of exceptional specificity for extra-cellular biomarker interactions demands the utility of advanced entities and multistep reactions both in solution and in the insoluble state. Thus, this review delineates the chemo-specific substrates, chemical methods, and structure–activity relationships (SARs) of chemical platforms used for isolation and enumeration of CTCs in advancing the relevance of liquid biopsy in cancer diagnostics and disease management. We highlight the synthesis of cell-specific, tumor biomarker-based, chemo-specific substrates utilizing functionalized linkers through chemistry-based conjugation strategies. The capacity of these nano/micro substrates to enhance the cell interaction specificity and efficiency with the targeted tumor cells is detailed. Furthermore, this review accounts for the importance of CTC capture and other downstream processes involving genotypic and phenotypic CTC analysis in real-time for the detection of the early onset of metastases progression and chemotherapy treatment response, and for monitoring progression free-survival (PFS), disease-free survival (DFS), and eventually overall survival (OS) in cancer patients. 
    more » « less
  2. null (Ed.)
    We demonstrate a label free and high-throughput microbubble-based acoustic microstreaming technique to isolate rare circulating cells such as circulating cancer associated fibroblasts (cCAFs) in addition to circulating tumor cells (CTCs) and immune cells ( i.e. leukocytes) from clinically diagnosed patients with a capture efficiency of 94% while preserving cell functional integrity within 8 minutes. The microfluidic device is self-pumping and was optimized to increase flow rate and achieve near perfect capturing of rare cells enabled by having a trapping capacity above the acoustic vortex saturation concentration threshold. Our approach enables rapid isolation of CTCs, cCAFs and their associated clusters from blood samples of cancer patients at different stages. By examining the combined role of cCAFs and CTCs in early cancer onset and metastasis progression, the device accurately diagnoses both cancer and the metastatic propensity of breast cancer patients. This was confirmed by flow cytometry where we observed that metastatic breast cancer blood samples had significantly higher percentage of exhausted CD8 + T cells expressing programmed cell death protein 1 (PD1), higher number of CD4 + T regulatory cells and T helper cells. We show for the first time that our lateral cavity acoustic transducers (LCATs)-based approach can thus be developed into a metastatic propensity assay for clinical usage by elucidating cancer immunological responses and the complex relationships between CTCs and its companion tumor microenvironment. 
    more » « less
  3. Abstract

    Hepatocellular Carcinoma (HCC) is one of the most lethal cancers with a high mortality and recurrence rate. Circulating tumor cell (CTC) detection offers various opportunities to advance early detection and monitoring of HCC tumors which is crucial for improving patient outcome. We developed and optimized a novel Labyrinth microfluidic device to efficiently isolate CTCs from peripheral blood of HCC patients. CTCs were identified in 88.1% of the HCC patients over different tumor stages. The CTC positivity rate was significantly higher in patients with more advanced HCC stages. In addition, 71.4% of the HCC patients demonstrated CTCs positive for cancer stem cell marker, CD44, suggesting that the major population of CTCs could possess stemness properties to facilitate tumor cell survival and dissemination. Furthermore, 55% of the patients had the presence of circulating tumor microemboli (CTM) which also correlated with advanced HCC stage, indicating the association of CTM with tumor progression. Our results show effective CTC capture from HCC patients, presenting a new method for future noninvasive screening and surveillance strategies. Importantly, the detection of CTCs with stemness markers and CTM provides unique insights into the biology of CTCs and their mechanisms influencing metastasis, recurrence and therapeutic resistance.

     
    more » « less
  4. Abstract

    Nanocellulose is increasingly considered for applications; however, the fibrillar nature, crystalline phase, and surface reactivity of these high aspect ratio nanomaterials need to be considered for safe biomedical use. Here a comprehensive analysis of the impact of cellulose nanofibrils (CNF) and nanocrystals (CNC) is performed using materials provided by the Nanomaterial Health Implications Research Consortium of the National Institute of Environmental Health Sciences. An intermediary length of nanocrystals is also derived by acid hydrolysis. While all CNFs and CNCs are devoid of cytotoxicity, 210 and 280 nm fluorescein isothiocyanate (FITC)‐labeled CNCs show higher cellular uptake than longer and shorter CNCs or CNFs. Moreover, CNCs in the 200–300 nm length scale are more likely to induce lysosomal damage, NLRP3 inflammasome activation, and IL‐1β production than CNFs. The pro‐inflammatory effects of CNCs are correlated with higher crystallinity index, surface hydroxyl density, and reactive oxygen species generation. In addition, CNFs and CNCs can induce maturation of bone marrow–derived dendritic cells and CNCs (and to a lesser extent CNFs) are found to exert adjuvant effects in ovalbumin (OVA)‐injected mice, particularly for 210 and 280 nm CNCs. All considered, the data demonstrate the importance of length scale, crystallinity, and surface reactivity in shaping the innate immune response to nanocellulose.

     
    more » « less
  5. Background

    A possible surveillance model for patients with head and neck cancer (HNC) who received definitive radiotherapy was created using a partially observed Markov decision process. The goal of this model is to guide surveillance imaging policies after definitive radiotherapy.

    Methods

    The partially observed Markov decision process model was formulated to determine the optimal times to scan patients. Transition probabilities were computed using a data set of 1508 patients with HNC who received definitive radiotherapy between the years 2000 and 2010. Kernel density estimation was used to smooth the sample distributions. The reward function was derived using cost estimates from the literature. Additional model parameters were estimated using either data from the literature or clinical expertise.

    Results

    When considering all forms of relapse, the model showed that the optimal time between scans was longer than the time intervals used in the institutional guidelines. The optimal policy dictates that there should be less time between surveillance scans immediately after treatment compared with years after treatment. Comparable results also held when only locoregional relapses were considered as relapse events in the model. Simulation results for the inclusive relapse cases showed that <15% of patients experienced a relapse over a simulated 36‐month surveillance program.

    Conclusions

    This model suggests that less frequent surveillance scan policies can maintain adequate information on relapse status for patients with HNC treated with radiotherapy. This model could potentially translate into a more cost‐effective surveillance program for this group of patients.

     
    more » « less