The mass distribution in massive elliptical galaxies encodes their evolutionary history, thus providing an avenue to constrain the baryonic astrophysics in their evolution. The power-law assumption for the radial mass profile in ellipticals has been sufficient to describe several observables to the noise level, including strong lensing and stellar dynamics. In this paper, we quantitatively constrained any deviation, or the lack thereof, from the power-law mass profile in massive ellipticals through joint lensing–dynamics analysis of a large statistical sample with 77 galaxy–galaxy lens systems. We performed an improved and uniform lens modelling of these systems from archival Hubble Space Telescope imaging using the automated lens modelling pipeline dolphin. We combined the lens model posteriors with the stellar dynamics to constrain the deviation from the power law after accounting for the line-of-sight lensing effects, a first for analyses on galaxy–galaxy lenses. We find that the Sloan Lens ACS Survey lens galaxies with a mean redshift of 0.2 are consistent with the power-law profile within 1.1σ (2.8σ) and the Strong Lensing Legacy Survey lens galaxies with a mean redshift of 0.6 are consistent within 0.8σ (2.1σ), for a spatially constant (Osipkov–Merritt) stellar anisotropy profile. We adopted the spatially constant anisotropy profile as our baseline choice based on previous dynamical observables of local ellipticals. However, spatially resolved stellar kinematics of lens galaxies are necessary to differentiate between the two anisotropy models. Future studies will use our lens models to constrain the mass distribution individually in the dark matter and baryonic components.
more » « less- PAR ID:
- 10501072
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 530
- Issue:
- 2
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 1474-1505
- Size(s):
- p. 1474-1505
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)ABSTRACT We investigate the internal structure of elliptical galaxies at z ∼ 0.2 from a joint lensing–dynamics analysis. We model Hubble Space Telescope images of a sample of 23 galaxy–galaxy lenses selected from the Sloan Lens ACS (SLACS) survey. Whereas the original SLACS analysis estimated the logarithmic slopes by combining the kinematics with the imaging data, we estimate the logarithmic slopes only from the imaging data. We find that the distribution of the lensing-only logarithmic slopes has a median 2.08c ± 0.03 and intrinsic scatter 0.13 ± 0.02, consistent with the original SLACS analysis. We combine the lensing constraints with the stellar kinematics and weak lensing measurements, and constrain the amount of adiabatic contraction in the dark matter (DM) haloes. We find that the DM haloes are well described by a standard Navarro–Frenk–White halo with no contraction on average for both of a constant stellar mass-to-light ratio (M/L) model and a stellar M/L gradient model. For the M/L gradient model, we find that most galaxies are consistent with no M/L gradient. Comparison of our inferred stellar masses with those obtained from the stellar population synthesis method supports a heavy initial mass function (IMF) such as the Salpeter IMF. We discuss our results in the context of previous observations and simulations, and argue that our result is consistent with a scenario in which active galactic nucleus feedback counteracts the baryonic-cooling-driven contraction in the DM haloes.more » « less
-
Abstract Observed evolution of the total mass distribution with redshift is crucial to testing galaxy evolution theories. To measure the total mass distribution, strong gravitational lenses complement the resolved dynamical observations that are currently limited to
z ≲ 0.5. Here we present the lens models for a pilot sample of seven galaxy-scale lenses from theASTRO3D Galaxy Evolution with Lenses (AGEL ) survey. TheAGEL lenses, modeled using HST/WFC3-F140W images with Gravitational Lens Efficient Explorer (GLEE ) software, have deflector redshifts in the range 0.3 <z defl< 0.9. Assuming a power-law density profile with slopeγ , we measure the total density profile for the deflector galaxies via lens modeling. We also measure the stellar velocity dispersions (σ obs) for four lenses and obtainσ obsfromSDSS -BOSS for the remaining lenses to test our lens models by comparing observed and model-predicted velocity dispersions. For the sevenAGEL lenses, we measure an average density profile slope of −1.95 ± 0.09 and aγ –z relation that does not evolve with redshift atz < 1. Although our result is consistent with some observations and simulations, it differs from other studies atz < 1 that suggest theγ –z relation evolves with redshift. The apparent conflicts among observations and simulations may be due to a combination of (1) systematics in the lensing and dynamical modeling; (2) challenges in comparing observations with simulations; and (3) assuming a simple power law for the total mass distribution. By providing more lenses atz defl> 0.5, theAGEL survey will provide stronger constraints on whether the mass profiles evolve with redshift as predicted by current theoretical models. -
ABSTRACT Galaxy–galaxy lensing is a powerful probe of the connection between galaxies and their host dark matter haloes, which is important both for galaxy evolution and cosmology. We extend the measurement and modelling of the galaxy–galaxy lensing signal in the recent Dark Energy Survey Year 3 cosmology analysis to the highly non-linear scales (∼100 kpc). This extension enables us to study the galaxy–halo connection via a Halo Occupation Distribution (HOD) framework for the two lens samples used in the cosmology analysis: a luminous red galaxy sample (redmagic) and a magnitude-limited galaxy sample (maglim). We find that redmagic (maglim) galaxies typically live in dark matter haloes of mass log10(Mh/M⊙) ≈ 13.7 which is roughly constant over redshift (13.3−13.5 depending on redshift). We constrain these masses to ${\sim}15{{\ \rm per\ cent}}$, approximately 1.5 times improvement over the previous work. We also constrain the linear galaxy bias more than five times better than what is inferred by the cosmological scales only. We find the satellite fraction for redmagic (maglim) to be ∼0.1−0.2 (0.1−0.3) with no clear trend in redshift. Our constraints on these halo properties are broadly consistent with other available estimates from previous work, large-scale constraints, and simulations. The framework built in this paper will be used for future HOD studies with other galaxy samples and extensions for cosmological analyses.more » « less
-
null (Ed.)The H0LiCOW collaboration inferred via strong gravitational lensing time delays a Hubble constant value of H 0 = 73.3 −1.8 +1.7 km s −1 Mpc −1 , describing deflector mass density profiles by either a power-law or stars (constant mass-to-light ratio) plus standard dark matter halos. The mass-sheet transform (MST) that leaves the lensing observables unchanged is considered the dominant source of residual uncertainty in H 0 . We quantify any potential effect of the MST with a flexible family of mass models, which directly encodes it, and they are hence maximally degenerate with H 0 . Our calculation is based on a new hierarchical Bayesian approach in which the MST is only constrained by stellar kinematics. The approach is validated on mock lenses, which are generated from hydrodynamic simulations. We first applied the inference to the TDCOSMO sample of seven lenses, six of which are from H0LiCOW, and measured H 0 = 74.5 −6.1 +5.6 km s −1 Mpc −1 . Secondly, in order to further constrain the deflector mass density profiles, we added imaging and spectroscopy for a set of 33 strong gravitational lenses from the Sloan Lens ACS (SLACS) sample. For nine of the 33 SLAC lenses, we used resolved kinematics to constrain the stellar anisotropy. From the joint hierarchical analysis of the TDCOSMO+SLACS sample, we measured H 0 = 67.4 −3.2 +4.1 km s −1 Mpc −1 . This measurement assumes that the TDCOSMO and SLACS galaxies are drawn from the same parent population. The blind H0LiCOW, TDCOSMO-only and TDCOSMO+SLACS analyses are in mutual statistical agreement. The TDCOSMO+SLACS analysis prefers marginally shallower mass profiles than H0LiCOW or TDCOSMO-only. Without relying on the form of the mass density profile used by H0LiCOW, we achieve a ∼5% measurement of H 0 . While our new hierarchical analysis does not statistically invalidate the mass profile assumptions by H0LiCOW – and thus the H 0 measurement relying on them – it demonstrates the importance of understanding the mass density profile of elliptical galaxies. The uncertainties on H 0 derived in this paper can be reduced by physical or observational priors on the form of the mass profile, or by additional data.more » « less
-
ABSTRACT We present a novel approach to extracting dwarf galaxies from photometric data to measure their average halo mass profile with weak lensing. We characterize their stellar mass and redshift distributions with a spectroscopic calibration sample. By combining the ${\sim} 5000\,\mathrm{deg}^2$ multiband photometry from the Dark Energy Survey and redshifts from the Satellites Around Galactic Analogs Survey with an unsupervised machine learning method, we select a low-mass galaxy sample spanning redshifts $z\lt 0.3$ and divide it into three mass bins. From low to high median mass, the bins contain [146 420, 330 146, 275 028] galaxies and have median stellar masses of $\log _{10}(M_*/\text{M}_\odot)=\left[8.52\substack{+0.57 -0.76},\, 9.02\substack{+0.50 -0.64},\, 9.49\substack{+0.50 -0.58}\right]$ . We measure the stacked excess surface mass density profiles, $\Delta \Sigma (R)$, of these galaxies using galaxy–galaxy lensing with a signal-to-noise ratio of [14, 23, 28]. Through a simulation-based forward-modelling approach, we fit the measurements to constrain the stellar-to-halo mass relation and find the median halo mass of these samples to be $\log _{10}(M_{\rm halo}/\text{M}_\odot)$ = [$10.67\substack{+0.2 -0.4}$, $11.01\substack{+0.14 -0.27}$, $11.40\substack{+0.08 -0.15}$]. The cold dark matter profiles are consistent with NFW (Navarro, Frenk, and White) profiles over scales ${\lesssim} 0.15 \, {h}^{-1}$ Mpc. We find that ${\sim} 20$ per cent of the dwarf galaxy sample are satellites. This is the first measurement of the halo profiles and masses of such a comprehensive, low-mass galaxy sample. The techniques presented here pave the way for extracting and analysing even lower mass dwarf galaxies and for more finely splitting galaxies by their properties with future photometric and spectroscopic survey data.