Abstract Observing the environment in the vast regions of Earth through remote sensing platforms provides the tools to measure ecological dynamics. The Arctic tundra biome, one of the largest inaccessible terrestrial biomes on Earth, requires remote sensing across multiple spatial and temporal scales, from towers to satellites, particularly those equipped for imaging spectroscopy (IS). We describe a rationale for using IS derived from advances in our understanding of Arctic tundra vegetation communities and their interaction with the environment. To best leverage ongoing and forthcoming IS resources, including National Aeronautics and Space Administration’s Surface Biology and Geology mission, we identify a series of opportunities and challenges based on intrinsic spectral dimensionality analysis and a review of current data and literature that illustrates the unique attributes of the Arctic tundra biome. These opportunities and challenges include thematic vegetation mapping, complicated by low‐stature plants and very fine‐scale surface composition heterogeneity; development of scalable algorithms for retrieval of canopy and leaf traits; nuanced variation in vegetation growth and composition that complicates detection of long‐term trends; and rapid phenological changes across brief growing seasons that may go undetected due to low revisit frequency or be obscured by snow cover and clouds. We recommend improvements to future field campaigns and satellite missions, advocating for research that combines multi‐scale spectroscopy, from lab studies to satellites that enable frequent and continuous long‐term monitoring, to inform statistical and biophysical approaches to model vegetation dynamics. 
                        more » 
                        « less   
                    
                            
                            Microbial biomanufacturing for space-exploration—what to take and when to make
                        
                    
    
            Abstract As renewed interest in human space-exploration intensifies, a coherent and modernized strategy for mission design and planning has become increasingly crucial. Biotechnology has emerged as a promising approach to increase resilience, flexibility, and efficiency of missions, by virtue of its ability to effectively utilize in situ resources and reclaim resources from waste streams. Here we outline four primary mission-classes on Moon and Mars that drive a staged and accretive biomanufacturing strategy. Each class requires a unique approach to integrate biomanufacturing into the existing mission-architecture and so faces unique challenges in technology development. These challenges stem directly from the resources available in a given mission-class—the degree to which feedstocks are derived from cargo and in situ resources—and the degree to which loop-closure is necessary. As mission duration and distance from Earth increase, the benefits of specialized, sustainable biomanufacturing processes also increase. Consequentially, we define specific design-scenarios and quantify the usefulness of in-space biomanufacturing, to guide techno-economics of space-missions. Especially materials emerged as a potentially pivotal target for biomanufacturing with large impact on up-mass cost. Subsequently, we outline the processes needed for development, testing, and deployment of requisite technologies. As space-related technology development often does, these advancements are likely to have profound implications for the creation of a resilient circular bioeconomy on Earth. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1852189
- PAR ID:
- 10501397
- Publisher / Repository:
- Nature Communications
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Over the past decades, missions at the L1 point have been providing solar wind and interplanetary magnetic field measurements that are necessary for forecasting space weather at Earth with high accuracy and a lead time of a few tens of minutes. Improving the lead time, while maintaining a relatively high level of accuracy, can be achieved with missions sunward of L1, so‐called sub‐L1 monitors. However, too much is unknown to plan for sub‐L1 monitors as operational missions: both the orbital requirements of such missions, and the achievable accuracy of forecasts based on their measurements have not been quantitatively defined. We review here some proposed mission concepts and explain the knowledge gaps related to coronal mass ejections (CMEs) that require a space weather research or science mission. We first show how STEREO‐A measurements in 2023 can be used as a proof of concept of the use of sub‐L1 monitor slightly off the Sun‐Earth line to forecast the Dst index. We then highlight that separations of are needed to ensure that CMEs measured by a sub‐L1 monitor impact Earth. Next, we show that measurements with angular separations of have negligible errors but separations of a few degrees can result in significant errors in lead time and in the forecasted magnetic field strength of CMEs. We also discuss how CME evolution over the last 0.05–0.2 au before impacting Earth is strongly under‐constrained and needs to be better understood before using measurements of sub‐L1 monitors for real‐time space weather forecasting.more » « less
- 
            Abstract The solar wind (SW) and local interstellar medium (LISM) are turbulent media. Their interaction is governed by complex physical processes and creates heliospheric regions with significantly different properties in terms of particle populations, bulk flow and turbulence. Our knowledge of the solar wind turbulence nature and dynamics mostly relies on near-Earth and near-Sun observations, and has been increasingly improving in recent years due to the availability of a wealth of space missions, including multi-spacecraft missions. In contrast, the properties of turbulence in the outer heliosphere are still not completely understood. In situ observations by Voyager and New Horizons , and remote neutral atom measurements by IBEX strongly suggest that turbulence is one of the critical processes acting at the heliospheric interface. It is intimately connected to charge exchange processes responsible for the production of suprathermal ions and energetic neutral atoms. This paper reviews the observational evidence of turbulence in the distant SW and in the LISM, advances in modeling efforts, and open challenges.more » « less
- 
            Ultra‐Flexible Visible‐Blind Optoelectronics for Wired and Wireless UV Sensing in Harsh EnvironmentsAbstract Exploring remote destinations on Earth and in space such as the Antarctic and Mars is of great significance to science and technology. Ultraviolet (UV) irradiation at those locations is usually strong due to the depletion or absence of ozone, which is often accompanied by strong visible light interference and harsh environments with extreme temperatures. Those exploration missions extensively utilize flexible and foldable membranes and shells to meet the extreme requirements on structural size and weight. Ultra‐flexible UV photodetectors (PDs) capable of surviving harsh environments with additional ability to integrate on flexible and foldable structures for in situ visible‐blind UV sensing are critical to the protection of human explorers and engineering materials. However, the development of such UV PDs remains challenging. Here, this work introduces wired and wireless optoelectronic devices based on visible‐blind, ultra‐flexible, sub‐micron nanocomposites of zinc oxide nanoparticles and single‐walled carbon nanotubes. In‐depth studies demonstrate their operation at cold and hot temperatures and low air pressure. Those PDs can employ flexible near‐field communication circuits for wireless, battery‐free data acquisition. Their ultra‐flexibility allows folding into a sharp crease and conformal integration to flexible and origami structures, bringing further opportunities for UV detection in demanding missions on Earth and in space.more » « less
- 
            Abstract Imaging spectroscopy is a powerful tool used to support diverse Earth science and applications objectives, ranging from understanding and mitigating widespread impacts of climate change to management of water at farm‐scale. Community studies, such as those deployed by NASA's Surface Biology and Geology and ESA's Copernicus Hyperspectral Imaging Mission for the Environment, have offered new and tangible insights into user needs that are then incorporated into overall mission planning and design. These technologies and tools will be key to develop and consolidate downstream services for users and resource management, given the current pressures on the environment posed by climate change and population growth. This process has highlighted the degree to which planned mission capabilities are responsive to community needs. In this study, we analyze user requirements belonging to the Italian Copernicus User Forum and to the user pool of NASA's Surface Biology and Geology community for the synergic use of hyperspectral imaging technology, providing a reference for the development of earth observation services and the consolidation of existing ones. In addition, potential cross‐mission coordination is analyzed to highlight key benefits—(a) addressing shared community needs around products requiring more frequent temporal revisit and (b) shared resources and community expertise around algorithm development. This paper discusses the critical role of early engagement with users to establish a community of practice ready to work with high spatial resolution imaging spectroscopy data sets. The main outcome is a guide for the synergetic use of hyperspectral mission and data together with the identification of the main gaps between user needs and satellite capabilities influencing the development of key national and trans‐national downstream services.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    