skip to main content

This content will become publicly available on December 1, 2024

Title: Microcombs in fiber Fabry–Pérot cavities

Optical frequency combs, which consist of precisely controlled spectral lines covering a wide range, have played a crucial role in enabling numerous scientific advancements. Beyond the conventional approach that relies on mode-locked lasers, microcombs generated from microresonators pumped at a single frequency have arguably given rise to a new field within cavity nonlinear photonics, which has led to a robust exchange of ideas and research between theoretical, experimental, and technological aspects. Microcombs are extremely attractive in applications requiring a compact footprint, low cost, good energy efficiency, large comb spacing, and access to nonconventional spectral regions. The recently arising microcombs based on fiber Fabry–Pérot microresonators provide unique opportunities for ultralow noise and high-dimensional nonlinear optics. In this review, we comprehensively examine the recent progress of fiber Kerr microcombs and discuss how various phenomena in fibers can be utilized to enhance the microcomb performances that benefit a plethora of applications.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
APL Photonics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Optical frequency combs in microresonators (microcombs) have a wide range of applications in science and technology, due to its compact size and access to considerably larger comb spacing. Despite recent successes, the problems of self-starting, high mode efficiency as well as high output power have not been fully addressed for conventional soliton microcombs. Recent demonstration of laser cavity soliton microcombs by nesting a microresonator into a fiber cavity, shows great potential to solve the problems. Here we study the dissipative soliton generation and interaction dynamics in a microresonator-filtered fiber laser in both theory and experiment. We bring theoretical insight into the mode-locking principle, discuss the parameters effect on soliton properties, and provide experimental guidelines for broadband soliton generation. We predict chirped bright dissipative soliton with flat-top spectral envelope in microresonators with normal dispersion, which is fundamentally forbidden for the externally driven case. Furthermore, we experimentally achieve soliton microcombs with large bandwidth of ~10 nm and high mode efficiency of 90.7%. Finally, by taking advantage of an ultrahigh-speed time magnifier, we study the real-time soliton formation and interaction dynamics and experimentally observe soliton Newton’s cradle. Our study will benefit the design of the novel, high-efficiency and self-starting microcombs for real-world applications.

    more » « less
  2. Abstract

    Femtosecond mode-locked laser frequency combs have served as the cornerstone in precision spectroscopy, all-optical atomic clocks, and measurements of ultrafast dynamics. Recently frequency microcombs based on nonlinear microresonators have been examined, exhibiting remarkable precision approaching that of laser frequency combs, on a solid-state chip-scale platform and from a fundamentally different physical origin. Despite recent successes, to date, the real-time dynamical origins and high-power stabilities of such frequency microcombs have not been fully addressed. Here, we unravel the transitional dynamics of frequency microcombs from chaotic background routes to femtosecond mode-locking in real time, enabled by our ultrafast temporal magnifier metrology and improved stability of dispersion-managed dissipative solitons. Through our dispersion-managed oscillator, we further report a stability zone that is more than an order-of-magnitude larger than its prior static homogeneous counterparts, providing a novel platform for understanding ultrafast dissipative dynamics and offering a new path towards high-power frequency microcombs.

    more » « less
  3. Microresonator frequency combs and their design versatility have revolutionized research areas from data communication to exoplanet searches. While microcombs in the 1550 nm band are well documented, there is interest in using microcombs in other bands. Here, we demonstrate the formation and spectral control of normal-dispersion dark soliton microcombs at 1064 nm. We generate 200 GHz repetition rate microcombs by inducing a photonic bandgap of the microresonator mode for the pump laser with a photonic crystal. We perform the experiments with normal-dispersion microresonators made from Ta2O5 and explore unique soliton pulse shapes and operating behaviors. By adjusting the resonator dispersion through its nanostructured geometry, we demonstrate control over the spectral bandwidth of these combs, and we employ numerical modeling to understand their existence range. Our results highlight how photonic design enables microcomb spectra tailoring across wide wavelength ranges, offering potential in bioimaging, spectroscopy, and photonic-atomic quantum technologies.

    more » « less
  4. Abstract

    Recent advances in of soliton microcombs have shown great promise to revolutionize many important areas such as optical communication, spectroscopic sensing, optical clock, and frequency synthesis. A largely tunable comb line spacing is crucial for the practical application of soliton microcombs, which unfortunately is challenging to realize for an on‐chip monolithic microresonators. The recently discovered perfect soliton crystal (PSC) offers a convenient route to tune the comb line spacing. However, excitation of a PSC is generally stochastic by its nature and accessing a certain PSC state requires delicate tuning procedure. Here the on‐demand generation of PSCs in a lithium niobate microresonator is demonstrated. The unique device characteristics allow to produce a variety of PSCs and to switch between different PSC states, deterministically and repetitively. The device is utilized to show arbitrary dialing of the comb line spacing from 1 to 11 times of the free‐spectral range of the resonator. The demonstration of PSCs on demand may now open up a great avenue for flexibly controlling the repetition rate of soliton pulses, which would significantly enhance and extend the application potential of soliton microcombs for communication, signal processing, and sensing.

    more » « less
  5. Over the past decade, remarkable advances have been realized in chip-based nonlinear photonic devices for classical and quantum applications in the near- and mid-infrared regimes. However, few demonstrations have been realized in the visible and near-visible regimes, primarily due to the large normal material group-velocity dispersion (GVD) that makes it challenging to phase match third-order parametric processes. In this paper, we show that exploiting dispersion engineering of higher-order waveguide modes provides waveguide dispersion that allows for small or anomalous GVD in the visible and near-visible regimes and phase matching of four-wave mixing processes. We illustrate the power of this concept by demonstrating in silicon nitride microresonators a near-visible mode-locked Kerr frequency comb and a narrowband photon-pair source compatible with Rb transitions. These realizations extend applications of nonlinear photonics towards the visible and near-visible regimes for applications in time and frequency metrology, spectral calibration, quantum information, and biomedical applications.

    more » « less