skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Peptide‐Driven Proton Sponge Nano‐Assembly for Imaging and Triggering Lysosome‐Regulated Immunogenic Cancer Cell Death
Triggering lysosome‐regulated immunogenic cell death (ICD, e.g., pyroptosis and necroptosis) with nanomedicines is an emerging approach for turning an “immune‐cold” tumor “hot”—a key challenge faced by cancer immunotherapies. Proton sponge such as high‐molecular‐weight branched polyethylenimine (PEI) is excellent at rupturing lysosomes, but its therapeutic application is hindered by uncontrollable toxicity due to fixed charge density and poor understanding of resulted cell death mechanism. Here, a series of proton sponge nano‐assemblies (PSNAs) with self‐assembly controllable surface charge density and cell cytotoxicity are created. Such PSNAs are constructed via low‐molecular‐weight branched PEI covalently bound to self‐assembling peptides carrying tetraphenylethene pyridinium (PyTPE, an aggregation‐induced emission‐based luminogen). Assembly of PEI assisted by the self‐assembling peptide‐PyTPE leads to enhanced surface positive charges and cell cytotoxicity of PSNA. The self‐assembly tendency of PSNAs is further optimized by tuning hydrophilic and hydrophobic components within the peptide, thus resulting in the PSNA with the highest fluorescence, positive surface charge density, cell uptake, and cancer cell cytotoxicity. Systematic cell death mechanistic studies reveal that the lysosome rupturing‐regulated pyroptosis and necroptosis are at least two causes of cell death. Tumor cells undergoing PSNA‐triggered ICD activate immune cells, suggesting the great potential of PSNAs to trigger anticancer immunity.  more » « less
Award ID(s):
1845683 2011924
PAR ID:
10501667
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Immunogenic cell death (ICD) plays a major role in providing long lasting protective antitumor immunity by the chronic exposure of damage associated molecular patterns (DAMPs) in the tumor microenvironment (TME). DAMPs are essential for attracting immunogenic cells to the TME, maturation of DCs, and proper presentation of tumor antigens to the T cells so they can kill more cancer cells. Thus for the proper release of DAMPs, a controlled mechanism of cell death is necessary. Drug induced tumor cell killing occurs by apoptosis, where in autophagy may act as a shield protecting the tumor cells and sometimes providing multi-drug resistance to chemotherapeutics. However, autophagy is required for the release of ATP as it remains one of the key DAMPs for the induction of ICD. In this review, we discuss the intricate balance between autophagy and apoptosis and the various strategies that we can apply to make these immunologically silent processes immunogenic. There are several steps of autophagy and apoptosis that can be regulated to generate an immune response. The genes involved in the processes can be regulated by drugs or inhibitors to amplify the effects of ICD and therefore serve as potential therapeutic targets. 
    more » « less
  2. null (Ed.)
    Human respiratory syncytial virus (RSV) is the most common cause of viral bronchiolitis and pneumonia in infants and children worldwide. Inflammation induced by RSV infection is responsible for its hallmark manifestation of bronchiolitis and pneumonia. The cellular debris created through lytic cell death of infected cells is a potent initiator of this inflammation. Macrophages are known to play a pivotal role in the early innate immune and inflammatory response to viral pathogens. However, the lytic cell death mechanisms associated with RSV infection in macrophages remains unknown. Two distinct mechanisms involved in lytic cell death are pyroptosis and necroptosis. Our studies revealed that RSV induces lytic cell death in macrophages via both of these mechanisms, specifically through the ASC (Apoptosis-associated speck like protein containing a caspase recruitment domain)-NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome activation of both caspase-1 dependent pyroptosis and receptor-interacting serine/threonine-protein kinase 3 (RIPK3), as well as a mixed lineage kinase domain like pseudokinase (MLKL)-dependent necroptosis. In addition, we demonstrated an important role of reactive oxygen species (ROS) during lytic cell death of RSV-infected macrophages. 
    more » « less
  3. Abstract Tumor associated macrophages (TAMs) suppress the cancer immune response and are a key target for immunotherapy. The effects of ruthenium and rhodium complexes on TAMs have not been well characterized. To address this gap in the field, a panel of 22 dirhodium and ruthenium complexes were screened against three subtypes of macrophages, triple‐negative breast cancer and normal breast tissue cells. Experiments were carried out in 2D and biomimetic 3D co‐culture experiments with and without irradiation with blue light. Leads were identified with cell‐type‐specific toxicity toward macrophage subtypes, cancer cells, or both. Experiments with 3D spheroids revealed complexes that sensitized the tumor models to the chemotherapeutic doxorubicin. Cell surface exposure of calreticulin, a known facilitator of immunogenic cell death (ICD), was increased upon treatment, along with a concomitant reduction in the M2‐subtype classifier arginase. Our findings lay a strong foundation for the future development of ruthenium‐ and rhodium‐based chemotherapies targeting TAMs. 
    more » « less
  4. Abstract Many new technologies, such as cancer microenvironment‐induced nanoparticle targeting and multivalent ligand approach for cell surface receptors, are developed for active targeting in cancer therapy. While the principle of each technology is well illustrated, most systems suffer from low targeting specificity and sensitivity. To fill the gap, this work demonstrates a successful attempt to combine both technologies to simultaneously improve cancer cell targeting sensitivity and specificity. Specifically, the main component is a targeting ligand conjugated self‐assembling monomer precursor (SAM‐P), which, at the tumor site, undergoes tumor‐triggered cleavage to release the active form of self‐assembling monomer capable of forming supramolecular nanostructures. Biophysical characterization confirms the chemical and physical transformation of SAM‐P from unimers or oligomers with low ligand valency to supramolecular assemblies with high ligand valency under a tumor‐mimicking reductive microenvironment. The in vitro fluorescence assay shows the importance of supramolecular morphology in mediating ligand–receptor interactions and targeting sensitivity. Enhanced targeting specificity and sensitivity can be achieved via tumor‐triggered supramolecular assembly and induces multivalent ligand presentation toward cell surface receptors, respectively. The results support this combined tumor microenvironment‐induced cell targeting and multivalent ligand display approach, and have great potential for use as cell‐specific molecular imaging and therapeutic agents with high sensitivity and specificity. 
    more » « less
  5. Abstract Supramolecular self‐assembly in biological systems holds promise to convert and amplify disease‐specific signals to physical or mechanical signals that can direct cell fate. However, it remains challenging to design physiologically stable self‐assembling systems that demonstrate tunable and predictable behavior. Here, the use of zwitterionic tetrapeptide modalities to direct nanoparticle assembly under physiological conditions is reported. The self‐assembly of gold nanoparticles can be activated by enzymatic unveiling of surface‐bound zwitterionic tetrapeptides through matrix metalloprotease‐9 (MMP‐9), which is overexpressed by cancer cells. This robust nanoparticle assembly is achieved by multivalent, self‐complementary interactions of the zwitterionic tetrapeptides. In cancer cells that overexpress MMP‐9, the nanoparticle assembly process occurs near the cell membrane and causes size‐induced selection of cellular uptake mechanism, resulting in diminished cell growth. The enzyme responsiveness, and therefore, indirectly, the uptake route of the system can be programmed by customizing the peptide sequence: a simple inversion of the two amino acids at the cleavage site completely inactivates the enzyme responsiveness, self‐assembly, and consequently changes the endocytic pathway. This robust self‐complementary, zwitterionic peptide design demonstrates the use of enzyme‐activated electrostatic side‐chain patterns as powerful and customizable peptide modalities to program nanoparticle self‐assembly and alter cellular response in biological context. 
    more » « less